

Shaping a Sustainable Future

Innovation, efficiency and sustainability in heating and ventilation

Internationally recognised as a leader in commercial heating and ventilation, Hoval goes beyond simply supplying products.

We provide complete, tailored solutions designed to meet the unique needs of every site. With a diverse product range - including heat pumps, gas condensing boilers, and domestic water heating and storage tanks - our expert area sales managers across the UK are ready to guide customers towards the most efficient and environmentally conscious solutions.

At Hoval, our mission is clear:

"Together, we create sustainable Hoval solutions for everyone to enjoy a lifetime of feel-good climate, stress-free."

This mission drives everything we do, from developing innovative products to building strong relationships with our customers and the community.

We are guided by four key values that define who we are and how we operate:

- Family-spirited: We foster a sense of belonging and collaboration, treating our team and community with respect and care.
- Responsible: We are committed to ethical and sustainable practices, ensuring a positive impact on the environment and society.
- Technology-enthused: Passionate about cutting-edge technology, we create advanced, efficient and reliable solutions.
- Solution-focused: We understand our customers' needs and provide tailored solutions that deliver exceptional results.

Our motto "responsibility for energy and environment" encapsulates our unwavering commitment to sustainability. We continuously strive to minimise our environmental footprint through innovative design, efficient manufacturing, and renewable energy integration.

Contents

Explore our products & solutiuons innovation, efficiency and performance at a glance

Products

Heat Pumps	4
Belaria® fit (40-70)	5
Belaria® fit WLP	32
Belaria® fit WLH	48
Belaria® pro (24)	65
Belaria® pro Dual (40/50)	88
District Heating	112
TransTherm® pro (S/RS)	113
TransTherm [®] Giro	127
TransShare	140
DHW (Domestic Hot Water)	143
CombiVal	144
MultiVal	167
TransTherm® Aqua L/F	176
EnerVal / EnerVal G / EnerVal G Cool	195
Condensing Boilers	210
TopGas [®] Max	211
UltraGas [®] 2	223
UltraOil [®]	263
High Efficiency Boilers	298
Max-3 / Max-3 Plus	299
Indoor Climate Systems	321
Aftersales, Service & Spares	339

Heat Pumps

The heat pump for commercial use, efficient, sustainable and future-proof

Heat pumps are a highly sustainable and future-proof heating solution, operating without fossil fuels like oil or gas, heating buildings while significantly reducing carbon emissions. However, for larger buildings such as industrial facilities, hotels, and apartment blocks, several key factors must be considered when selecting the right heat pump system.

Hoval offers a range of heat pumps designed to meet varying demands, ensuring optimal efficiency and performance. In buildings with higher heat requirements, multiple heat pumps can be combined into a cascade system, delivering increased power and flexibility. As with single-family homes, keeping flow temperatures as low as possible is crucial for maximizing efficiency—this can be achieved through good thermal insulation or panel heating systems.

For existing buildings with higher heat demand, a hybrid system that integrates a heat pump with a gas heating system can provide an effective solution, offering both efficiency and reliability.

Hoval's heat pump portfolio includes:

- Belaria[®] fit (40-70)
- Belaria® pro (24)
- Belaria[®] pro (40, 50)
- Belaria[®] fit WLP
- Belaria[®] fit WLH

Hoval Belaria® fit (40-70) Air/water heat pump

- Modulating air/water heat pump in compact design for outdoor installation
- For heating and cooling in cascades up to 16 machines
- Output modulation 30-100 %
- Flow temperatures up to 60 °C
- Supporting frame structure with powder coating (RAL 9001)
- External cladding made of surface-coated steel sheet (RAL 9001)
- Multi-row fin evaporator with large surface area with hydrophilic coating and speedcontrolled axial fans
- · Condense drip tray with electrical heating
- · Safety valve 6 bar
- Flow switch
- Drain valve
- · Temperature sensor
- Pressure relief valve
- Refrigerant R32
- Hermetically sealed compressors with inverter control
- Copper-soldered plate heat exchanger made of stainless steel with polypropylene insulation and frost protection heating
- · Main switch
- Electrical box internally wired ready for connection
- · Voltage-free contact for ON/OFF
- Voltage-free contact for summer/winter changeover

Including additional PCB for expanded functions

The available digital contacts enable the following remote functions:

- Remote switch-on/off
- Heating/cooling (summer/winter switch)
- Water heating
- Two-zone management
- SG ready
- Energy supply company lock (remote operation on/off)
- Demand limit
- Activation of "Super Silent" version (whisper mode, can be selected on user interface)

The additional PCB does not allow the simultaneous use of digital inputs and Modbus signals.

Condensate drain

 It must be ensured that the condensate produced can be absorbed to a sufficient extent by a gravel bed (see configuration and connection diagram).

Hydraulic connections

Heating connections with supplied Victaulic couplings

Electrical connections

See installation instructions

TopTronic® E controller (option)

For enabling the Belaria® fit and regulating the plant

Model range Belaria® fit type	35 °C	55 °C	Max. flow °C	Heat output 1) A2W35 kW	Cooling capacity 1) A35W18 kW
(40)	A***	A**	60	22.7-40.6	33.8-59.3
(53)	A**	A**	60	25.4-53.2	37.5-78.0
(70)	A**	A ⁺	60	41.0-71.0	58.5-104.0
	$A^{***}\toD$	$A^{***}\toD$			

1) Modulation range

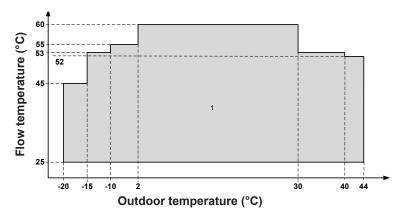
Operator terminal

- Operator terminal with graphical display and function keys
- Control and monitoring of the modulating heat pumps
- Setting the heating and cooling curves
- Selection of the operating mode: Standard, Silent and Super Silent
- Display of the current operating parameters
- The operator terminal can be installed in any
- · Can also be used as thermostat
- · Control also possible via Modbus
- · Operation available in 16 languages
- Included in the scope of delivery of the Belaria® fit

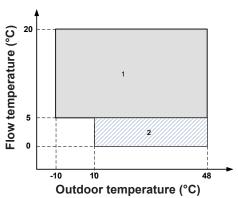
Belaria[®] fit (40-70)

Туре		(40)	(53)	(70)
• Energy efficiency class of the compound system with control ($A+++\to D$)	35 °C/55 °C	A+++ / A++	A++ / A++	A++ / A+
• Energy efficiency heating "moderate climate" 35/55 °C ηS,h 1)	%	175 / 127	173 / 125	169 / 123
Seasonal coefficient of performance heating moderate climate 35/55 °C	SCOP	4.46 / 3.24	4.41 / 3.19	4.29 / 3.16
• Energy efficiency cooling ηS,c	%	170.0	167.0	166.0
Seasonal energy efficiency cooling	SEER	4.3	4.3	4.2
Max. performance data heating and cooling in acc. with				
Heat output A2W35	kW	40.6	53.2	71
Coefficient of performance A2W35	COP	3.6	3.4	3.1
Heat output A-7W35	kW	30.7	40.5	59.2
Coefficient of performance A-7W35	COP	2.9	2.8	2.7
Cooling capacity A35W18	kW	59.3	78	104
Energy efficiency ratio A35W18	EER	4.2	3.5	3.7
Cooling capacity A35W7	kW	43.9	56.9	80.4
Energy efficiency ratio A35W7	EER	3.1	2.9	2.9
Sound data according to EN ISO 9614-2				
Sound power level "Standard"	dB(A)	75	78	81
Sound power level "Supersilent" 2)	dB(A)	71	72	75
Hydraulic data				
Maximum flow temperature	°C	60	60	60
• Nominal heating water quantity heating ΔT 5 K (A7W35)	m ³ /h	9.4	11.5	15.0
• Nominal heating water quantity heating ΔT 8 K (A7W35)	m³/h	5.9	7.2	9.4
 Nominal heating water quantity cooling ΔT 4 K (A35W7) 	m³/h	9.5	12.3	17.3
• Nominal heating water quantity cooling ΔT 4 K (A35W18)	m³/h	12.8	16.8	22.4
Max. operating pressure on the heating side	bar	2"	6 2"	2"
• Flow/return connection heating			_	_
Built-in fan Nominal air quantity	m ³ /h	2 axial fans 23040	2 axial fans 27000	3 axial fans 40500
	m /n	23040	21000	40000
Cooling technical data				us s alvilations
Compressor stages Refrigerant		modulating R32	modulating R32	modulating R32
Refrigeration circuits		1	1	1
Refrigerant filling quantity	kg	14	14	17.5
Compressor oil type	· ·		NE HERMETIC O	IL FW68S
Compressor oil filling quantity	I	4.6	4.6	6
Electrical data				
Connections	V/Hz	3~400/50	3~400/50	3~400/50
Starting current (compressor and fan)	Α	20.3	20.3	31
• Main current fuse ³⁾	Α	50	50	80
Dimensions/Weight				
• Dimensions (H x W x D)	mm	1480 x 230		1505 x 3325 x 1100
• Weight	kg	513	513	830

 $^{^{\}rm 1)}\,2$ % can be added for class II heat pump incl. control.


²⁾ Reduced heat outputs according to heating performance data

³⁾ Country-specific regulations must be observed. Selection of the fuse size by the electrician.


Hoval

Diagrams of areas of application

Heating and hot water Belaria® fit (40-70)

Cooling Belaria® fit (40-70)

- 1 Normal operating range
- 2 Operating range in which the use of ethylene glycol is mandatory

Sound pressure level

Standard

Туре					Sound pressure level	Sound power level				
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
Belaria® fit (40)	76	75	70	71	73	65	60	50	58	75
Belaria® fit (53)	76	75	68	72	76	69	62	52	61	78
Belaria® fit (70)	59	67	70	75	79	73	68	60	63	81

Super Silent (whisper mode)

Туре					Sound pressure level	Sound power level				
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
Belaria® fit (40)	50	62	67	67	69	62	57	48	54	71
Belaria® fit (53)	73	72	67	68	70	62	57	47	55	72
Belaria® fit (70)	56	69	69	72	69	67	67	59	57	75

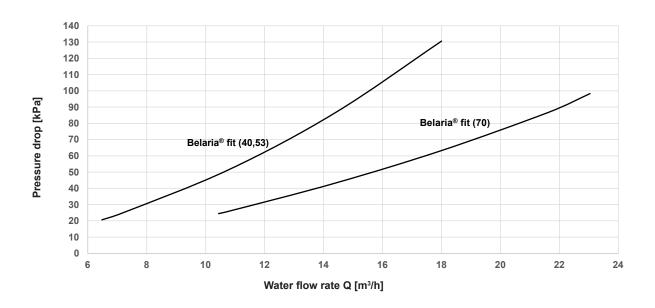
The sound levels refer to the nominal conditions of the heat pumps.

The sound pressure level refers to a distance of 1 meter from the outer surface of the unit during operation in the open.

The noise levels are determined according to the tensiometric method (EN ISO 9614-2).

The data refers to the following conditions in heating mode:
- Water in the internal heat exchanger = 30/35 °C

- Ambient temperature 7 °C


The data refers to the following conditions in cooling mode:

- Water in the internal heat exchanger = 12/7 °C

- Ambient temperature 35 °C

Pressure drop of the internal heat exchanger

The water pressure drops are calculated assuming an average water temperature of 7 °C.

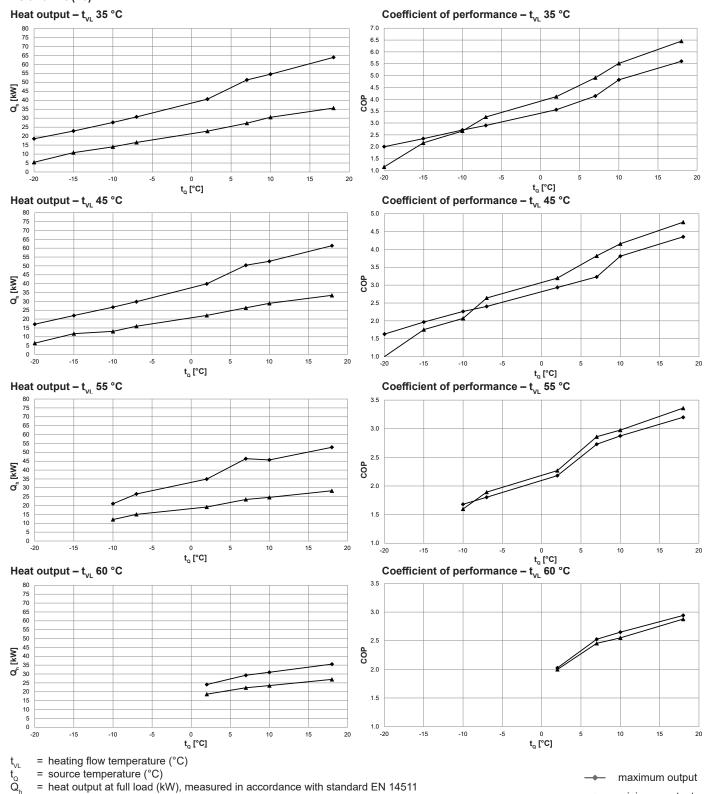
Permitted water flow rates

		Belaria® fit (40,53)	Belaria® fit (70)		
Minimum flow rate	[m ³ /h]	6.5	10.4		
Maximum flow rate	[m ³ /h]	18.0	23.0		

Correction factors when using glycol

ETHYLENE GLYCOL percentage by weight % Freezing point °C Safety temperature	5 -2 3	10 -3.9 1	15 -6.5 -1	20 -8.9 -4	25 -11.8 -6	30 -15.6 -10	35 -19 -14	40 -23.4 -19	45 -27.8 -23.8	50 -32.7 -29.4
Correction factor for the refrigerating capacity/heat output of the unit	0.997	0.994	0.990	0.986	0.981	0.976	0.970	0.964	0.957	0.950
Correction factor for power consumption of the compressor	0.999	0.999	0.998	0.997	0.996	0.996	0.995	0.994	0.993	0.993
Correction factor for the pressure drop in the system	1.016	1.035	1.056	1.080	1.106	1.135	1.166	1.200	1.236	1.275
PROPYLENE GLYCOL percentage by weight % Freezing point °C Safety temperature	5 -2 3	10 -3.9 1	15 -6.5 -1	20 -8.9 -4	25 -11.8 -6	30 -15.6 -10	35 -19 -14	40 -23.4 -19	45 -27.8 -23.8	50 -32.7 -29.4
Correction factor for the refrigerating capacity/heat output of the unit	0.995	0.990	0.983	0.976	0.968	0.960	0.950	0.939	0.928	0.916
Correction factor for power consumption of the com-	0.999	0.997	0.995	0.993	0.991	0.988	0.986	0.983	0.980	0.977
pressor										

The specified correction factors refer to water-glycol mixtures that are used to prevent frost formation on the heat exchangers of the water circuit during the winter break.


For the exact specifications of the frost protection agent used, refer to the respective manufacturer's data sheet!

minimum output

Performance data - heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (40)

Output correction factors in Super Silent mode (whisper mode)

Flow temperature °C 35 40 45 50 55 60 0.87 0.83 0.83 0.80 0.80 0.60 Heat output factor Power consumption factor 0.84 0.60 0.88 0.84 0.77 0.77 COP factor 1.00 1.00 1.00 1.03 1.03 1.00

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Performance data - heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (40)

			Maximum o	utput		Minimum o	output
t _{∨∟} °C	t _o °C	Q _n kW	P kW	COP	Q _h kW	P kW	СОР
				0.0			4.4
	-20	18.5	9.2	2.0	5.4	4.7	1.1
	-15	22.8	9.7	2.3	10.7	5.0	2.2
	-10 -	27.6	10.2	2.7	14.0	5.3	2.7
35	-7 2	30.7	10.6	2.9 3.6	16.5	5.1	3.3 4.1
	7	40.6	11.4		22.7	5.5	
	10	51.3	12.4 11.3	4.1 4.8	27.2	5.5 5.5	4.9 5.5
	18	54.5 63.9	11.3	4.6 5.6	30.5 35.6	5.5 5.5	5.5 6.5
	-20	17.8	9.7	1.8	7.5	5.9	1.3
	-20 -15	22.3	10.4	2.1	10.2	5.3	1.9
	-10	27.1	11.0	2.5	13.5	5.7	2.4
	-10 - 7	30.2	11.4	2.6	16.3	5.5	2.9
40	2	39.9	12.4	3.2	22.2	6.2	3.6
	7	50.8	12.4	4.1	28.1	6.2	4.6
	10	53.5	12.5	4.3	29.6	6.2	4.8
	18	62.7	12.7	4.9	34.5	6.2	5.6
	-20	17.1	10.5	1.6	6.4	6.4	1.0
	-15	22.0	11.2	2.0	11.8	6.7	1.8
	-10	26.7	11.8	2.3	13.1	6.3	2.1
	- 7	29.8	12.4	2.4	16.0	6.0	2.6
45	2	39.9	13.6	2.9	22.1	6.9	3.2
	7	50.4	15.6	3.2	26.4	6.9	3.8
	10	52.6	13.8	3.8	28.9	7.0	4.2
	18	61.4	14.1	4.4	33.4	7.0	4.8
	-20	-	-	-	-	-	-
	-15	19.7	12.4	1.6	11.4	7.4	1.5
	-10	24.1	13.2	1.8	12.5	6.7	1.9
	-7	27.1	13.6	2.0	15.3	6.8	2.3
50	2	35.6	14.7	2.4	19.6	7.6	2.6
	7	44.2	14.3	3.1	24.2	7.4	3.3
	10	46.8	14.5	3.2	25.5	7.4	3.4
	18	54.4	14.9	3.7	29.4	7.5	3.9
	-20	-	-	-	-	-	-
	-15	-	-	-	-	-	-
	-10	21.0	12.5	1.7	12.1	7.6	1.6
FF	-7	26.5	14.7	1.8	15.0	7.9	1.9
55	2	34.9	16.0	2.2	19.1	8.4	2.3
	7	46.4	17.0	2.7	23.4	8.2	2.9
	10	45.7	15.9	2.9	24.6	8.3	3.0
	18	52.8	16.5	3.2	28.3	8.4	3.4
	-20	-	-	-	-	-	-
	-15	-	-	-	-	-	-
	-10	-	-	-	-	-	-
60	-7	-	-	-	-	-	-
30	2	24.1	11.9	2.0	18.7	9.3	2.0
	7	29.3	11.6	2.5	22.3	9.1	2.5
	10	31.0	11.7	2.6	23.5	9.2	2.6
	18	35.6	12.1	2.9	27.0	9.4	2.9

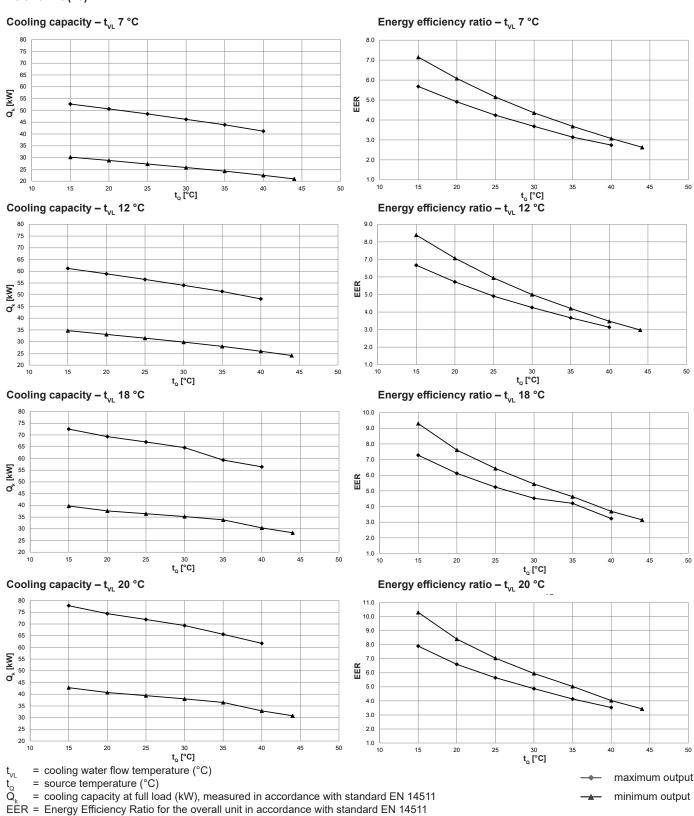
= heating flow temperature (°C)

t_Q Q_h P = source temperature (°C)

= heat output at full load (kW), measured in accordance with standard EN 14511

= power consumption for the overall unit (kW)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511


Output correction factors in Super Silent mode (whisper mode)

°C 35 40 45 50 60 Flow temperature 55 0.87 0.83 0.83 0.80 0.80 0.60 Heat output factor Power consumption factor 0.88 0.84 0.84 0.77 0.77 0.60 COP factor 1.00 1.00 1.00 1.03 1.03 1.00

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (40)

Output correction factors in Super Silent mode (whisper mode)

Cooling capacity factor - 0.87 Power consumption factor - 0.87 EER factor - 1.00

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (40)

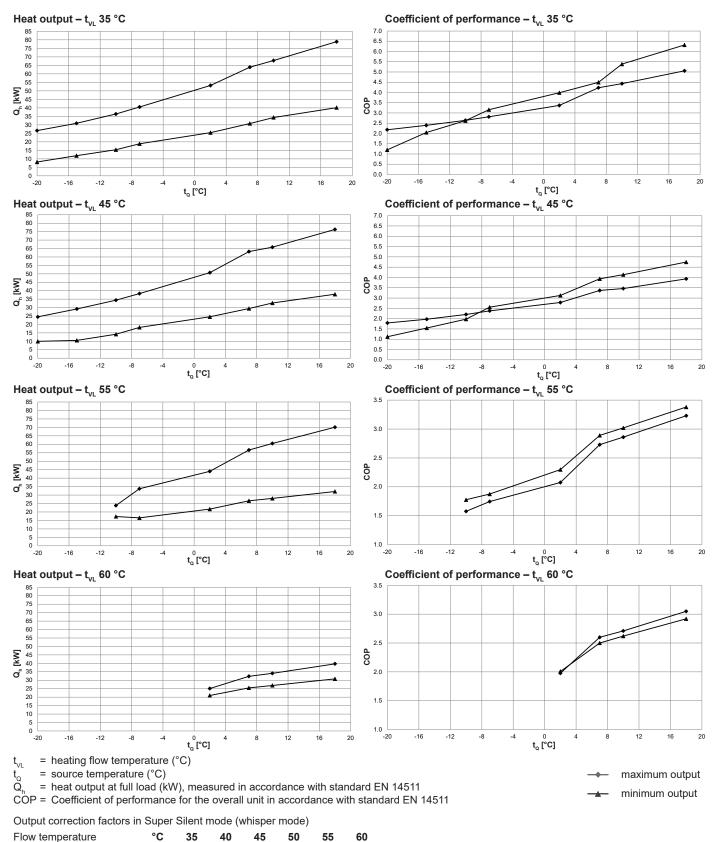
		Ма	ximum outp	out	Minimum output			
t _{vi}	t _o	$\mathbf{Q}_{_{\mathbf{k}}}$	Р	EER	\mathbf{Q}_{k}	Р	EER	
t _{∨∟} °C	t₀ °C	kŴ	kW		kŴ	kW		
	15	52.7	9.3	5.7	30.2	4.2	7.2	
	20	50.6	10.3	4.9	28.8	4.7	6.1	
	25	48.5	11.4	4.2	27.3	5.3	5.2	
7	30	46.2	12.6	3.7	25.8	5.9	4.4	
	35	43.9	14.0	3.1	24.3	6.6	3.7	
	40	41.2	15.0	2.7	22.5	7.3	3.1	
	44	-	-	-	21.0	8.0	2.6	
	15	57.8	9.2	6.3	32.9	4.2	7.9	
	20	55.6	10.3	5.4	31.4	4.7	6.7	
	25	53.3	11.5	4.6	29.8	5.3	5.6	
10	30	50.9	12.7	4.0	28.2	5.9	4.7	
	35	48.4	13.9	3.5	26.5	6.6	4.0	
	40	45.4	15.2	3.0	24.5	7.4	3.3	
	44	-	-	-	22.9	8.1	2.8	
	15	61.2	9.2	6.7	34.7	4.1	8.4	
	20	58.9	10.3	5.7	33.1	4.7	7.1	
	25	56.5	11.5	4.9	31.5	5.3	6.0	
12	30	54.0	12.7	4.3	29.8	6.0	5.0	
	35	51.4	14.0	3.7	28.0	6.7	4.2	
	40	48.2	15.4	3.1	25.9	7.4	3.5	
	44	-	-	-	24.1	8.1	3.0	
	15	68.2	10.1	6.8	36.5	4.4	8.3	
	20	65.2	11.4	5.7	34.6	5.1	6.8	
	25	62.1	12.8	4.9	32.5	5.8	5.7	
15	30	60.0	14.2	4.2	31.3	6.5	4.8	
	35	57.7	15.8	3.7	30.3	7.4	4.1	
	40	54.4	17.3	3.1	28.0	8.2	3.4	
	44	-	-	-	26.2	9.0	2.9	
	15	72.5	10.0	7.3	39.7	4.3	9.3	
	20	69.3	11.3	6.1	37.6	4.9	7.6	
	25	67.0	12.8	5.2	36.4	5.7	6.4	
18	30	64.6	14.3	4.5	35.2	6.5	5.4	
	35	59.3	14.1	4.2	33.8	7.3	4.6	
	40	56.4	17.5	3.2	30.4	8.2	3.7	
	44	-	-	-	28.3	9.0	3.2	
	15	77.8	9.8	7.9	42.8	4.2	10.3	
	20	74.4	11.3	6.6	40.7	4.8	8.4	
	25	71.9	12.7	5.7	39.4	5.6	7.0	
20	30	69.3	14.2	4.9	38.0	6.4	6.0	
	35	65.6	15.8	4.1	36.5	7.3	5.0	
	40	61.7	17.5	3.5	32.9	8.2	4.0	
	44	-	-	-	30.8	9.0	3.4	

= cooling water flow temperature (°C)

= source temperature (°C) = cooling capacity at full load (kW), measured in accordance with standard EN 14511

= power consumption for the overall unit (kW)

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511


Output correction factors in Super Silent mode (whisper mode)

0.87 Cooling capacity factor Power consumption factor 0.87 EER factor 1.00

Performance data - heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (53)

Flow temperature 0.87 0.79 0.79 0.80 0.80 0.82 Heat output factor 0.74 0.74 0.80 0.80 0.80 Power consumption factor 0.80 COP factor 1.04 1.07 1.07 1.02 1.02 1.03

Performance data - heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (53)

		Ма	ximum out	out	Minimum output			
t _{vi}	t _o °C	\mathbf{Q}_{h}	P	COP	\mathbf{Q}_{h}	Р.	COP	
t _{v∟} °C	°Č	kŴ	kW		kŴ	kW		
	-20	26.6	12.2	2.2	8.1	6.8	1.2	
	-15	30.9	12.9	2.4	11.9	5.8	2.0	
	-10	36.4	13.8	2.6	15.3	5.9	2.6	
25	-7	40.5	14.4	2.8	18.9	6.0	3.2	
35	2	53.2	15.8	3.4	25.4	6.4	4.0	
	7	63.9	15.1	4.2	30.8	6.8	4.5	
	10	67.8	15.3	4.4	34.3	6.4	5.4	
	18	78.9	15.6	5.1	40.1	6.3	6.3	
	-20	25.5	12.9	2.0	11.0	8.5	1.3	
	-15	30.0	13.8	2.2	11.3	6.3	1.8	
	-10	35.1	14.5	2.4	14.9	6.6	2.3	
40	-7	39.5	14.9	2.7	18.7	6.5	2.9	
40	2	51.7	16.6	3.1	25.0	7.0	3.5	
	7	63.5	16.8	3.8	31.6	7.0	4.5	
	10	66.8	17.0	3.9	33.5	7.1	4.7	
	18	77.7	17.4	4.5	39.0	7.1	5.5	
	-20	24.5	13.7	1.8	10.0	8.9	1.1	
	-15	29.2	14.8	2.0	10.6	6.8	1.5	
	-10	34.4	15.6	2.2	14.2	7.2	2.0	
45	-7	38.3	16.1	2.4	18.3	7.1	2.6	
43	2	50.7	18.2	2.8	24.5	7.8	3.1	
	7	63.2	18.7	3.4	29.4	7.8	3.9	
	10	65.8	19.0	3.5	32.7	7.9	4.1	
	18	76.3	19.4	3.9	37.9	8.0	4.7	
	-20	- -	-	-	-	-		
	-15	26.5	16.1	1.6	9.5	7.4	1.3	
	-10	31.4	17.2	1.8	13.5	7.8	1.7	
50	-7	34.6	17.8	1.9	17.4	8.0	2.2	
	2	44.9	19.4	2.3	22.2	8.6	2.6	
	7	58.6	19.0	3.1	27.3	8.6	3.4	
	10	61.8	19.3	3.2	28.9	8.4	3.5	
	18	71.7	19.9	3.6	33.4	8.5	3.9	
	-20 -15	-	-	-	-	-	-	
	−15 −10	-	- 15 1	- 1.6	- 17 2	- 0.7	- 1 0	
		23.8	15.1	1.6	17.3	9.7	1.8	
55	-7 2	33.7 44.0	19.3 21.2	1.7 2.1	16.5 21.7	8.8 9.4	1.9 2.3	
	7			2.1		9.4 9.2	2.3 2.9	
	10	56.6 60.5	20.7 21.2	2.7	26.6 28.0	9.2	3.0	
	18	70.1	21.2	3.2	32.1	9.5 9.5	3.4	
	-20	70.1		-	JZ. I	J.J	-	
	-15	-	_		_	_	_	
	-10	_	_	_	_	_	_	
	- 7	_	_	_	_	_	_	
60	2	25.1	12.7	2.0	21.0	10.5	2.0	
	7	32.3	12.4	2.6	25.5	10.2	2.5	
	10	34.1	12.6	2.7	26.9	10.3	2.6	
	18	39.7	13.0	3.1	30.8	10.5	2.9	

t_{vL} = heating flow temperature (°C)

t_Q = source temperature (°C)

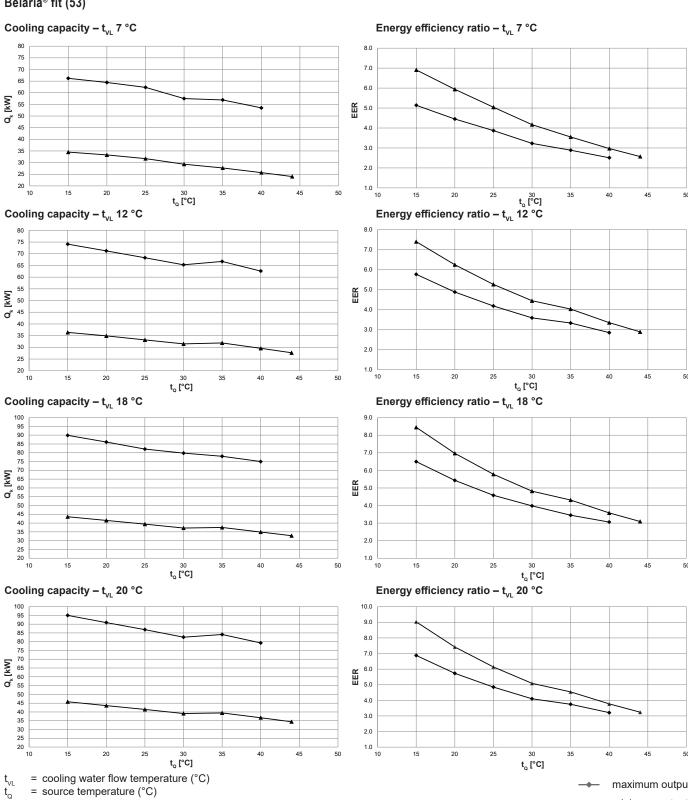
 $\overset{\circ}{Q}_h$ = heat output at full load (kW), measured in accordance with standard EN 14511

P = power consumption for the overall unit (kW)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Output correction factors in Super Silent mode (whisper mode)

Flow temperature °C 35 40 45 50 55 60 Heat output factor 0.87 0.79 0.79 0.80 0.80 0.82 0.80 0.74 Power consumption factor 0.74 0.80 0.80 0.80 COP factor 1.04 1.07 1.02 1.02 1.07 1.03


maximum output

minimum output

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (53)

 Q_k = cooling capacity at full load (kW), measured in accordance with standard EN 14511 EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511 Output correction factors in Super Silent mode (whisper mode)

0.83 Cooling capacity factor Power consumption factor 0.80 **EER** factor 1.06

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (53)

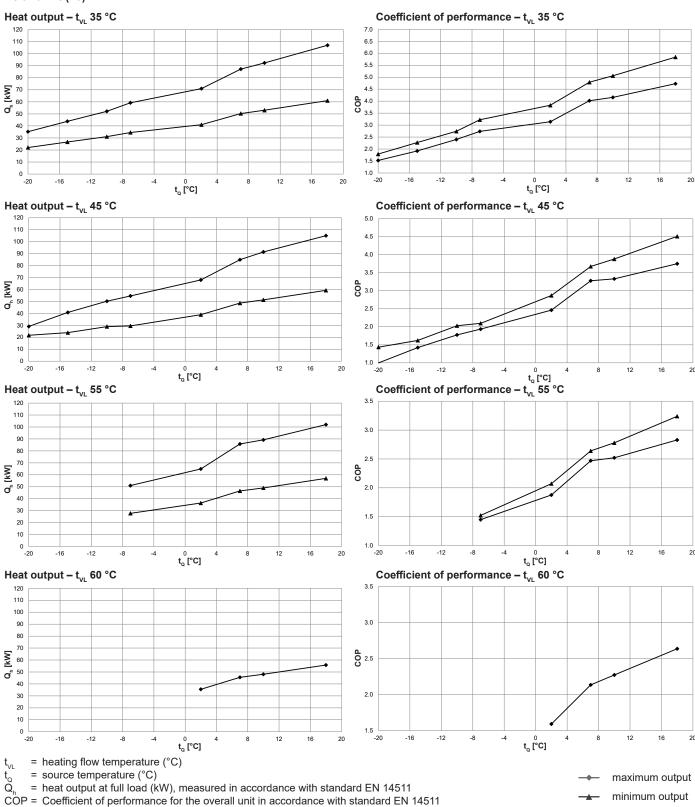
		Ma	ximum outp	out	Minimum output			
t _{∨∟} °C	t _o °C	Q _k kW	P kW	EER	Q _k kW	P kW	EER	
	15	66.2	12.9	5.1	34.5	5.0	6.9	
	20	64.4	14.5	4.5	33.3	5.6	5.9	
	25	62.3	16.1	3.9	31.7	6.3	5.0	
7	30	57.5	17.8	3.2	29.3	7.0	4.2	
	35	56.9	19.7	2.9	27.7	7.8	3.6	
	40	53.5	21.3	2.5	25.7	8.7	3.0	
	44	-	-	-	24.0	9.3	2.6	
	15	70.0	12.9	5.4	34.6	5.0	7.0	
	20	67.3	14.5	4.6	33.0	5.6	5.9	
	25	64.4	16.3	4.0	31.5	6.3	5.0	
10	30	61.5	18.0	3.4	29.8	7.1	4.2	
	35	62.9	19.8	3.2	30.3	7.9	3.8	
	40	58.9	21.7	2.7	28.1	8.8	3.2	
	44	-	-	-	26.3	9.5	2.8	
	15	74.1	12.9	5.8	36.4	4.9	7.4	
	20	71.2	14.6	4.9	34.9	5.6	6.2	
	25	68.3	16.3	4.2	33.2	6.3	5.3	
12	30	65.3	18.2	3.6	31.5	7.1	4.4	
	35	66.7	20.0	3.3	31.9	7.9	4.0	
	40	62.6	22.0	2.9	29.6	8.8	3.4	
	44	-	-	-	27.7	9.6	2.9	
	15	82.5	13.9	6.0	40.3	5.0	8.1	
	20	78.6	15.8	5.0	38.4	5.7	6.7	
	25	75.3	17.8	4.2	36.4	6.5	5.6	
15	30	72.0	19.9	3.6	34.6	7.3	4.7	
	35	73.7	22.1	3.3	35.0	8.2	4.3	
	40	69.2	24.3	2.9	32.4	9.2	3.5	
	44	-	-	-	30.3	10.2	3.0	
	15	89.9	13.8	6.5	43.6	5.2	8.5	
	20	86.1	15.9	5.4	41.5	6.0	7.0	
	25	82.1	17.9	4.6	39.4	6.8	5.8	
18	30	79.8	20.1	4.0	37.2	7.7	4.8	
	35	78.0	22.6	3.5	37.5	8.7	4.3	
	40	75.0	24.5	3.1	34.9	9.7	3.6	
	44	-	-	-	32.8	10.6	3.1	
	15	95.0	13.8	6.9	45.8	5.1	9.0	
	20	90.9	15.9	5.7	43.6	5.9	7.4	
	25	86.9	17.9	4.9	41.4	6.7	6.1	
20	30	82.6	20.1	4.1	39.1	7.7	5.1	
	35	84.1	22.4	3.8	39.4	8.7	4.5	
	40	79.3	24.7	3.2	36.7	9.7	3.8	
	44	-	-	-	34.4	10.6	3.2	

= cooling water flow temperature (°C) = source temperature (°C)

= cooling capacity at full load (kW), measured in accordance with standard EN 14511

= power consumption for the overall unit (kW)

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511


Output correction factors in Super Silent mode (whisper mode)

0.83 Cooling capacity factor 0.80 Power consumption factor EER factor 1.06

Performance data - heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (70)

Output correction factors in Super Silent mode (whisper mode)

Flow temperature 35 40 45 60 0.83 0.82 0.81 0.80 0.80 0.80 Heat output factor 0.83 0.72 0.72 0.74 0.74 Power consumption factor 0.74 COP factor 1.02 1.14 1.14 1.08 1.08

Performance data – heating

Maximum heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit (70)

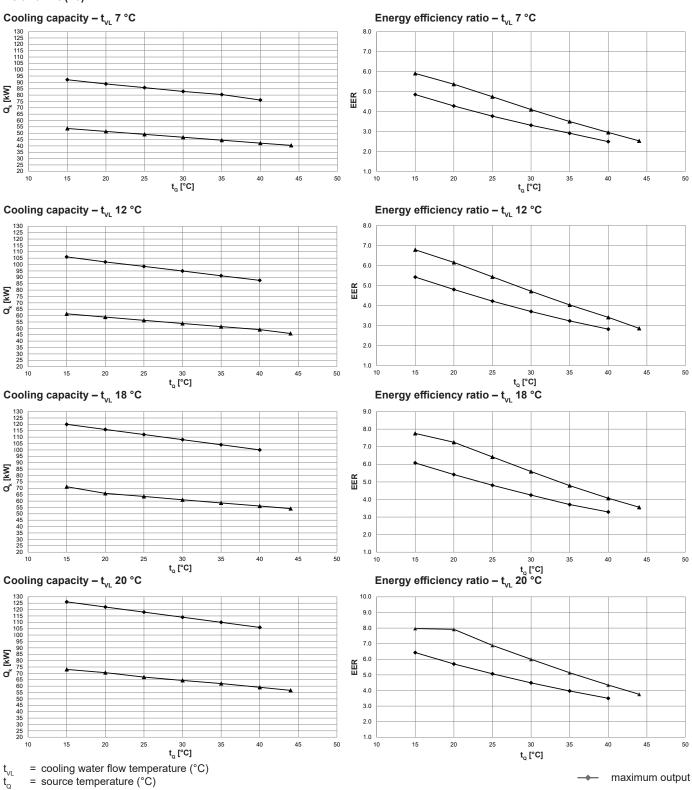
		M	aximum ou	tput		Minimum out	put
t _{∨∟} °C	t °C	Q _h kW	P kW	COP	Q _h kW	P kW	COP
	-20	35.2	23.1	1.5	22.0	12.3	1.8
	-15	43.8	22.8	1.9	26.6	11.7	2.3
	-10	52.1	21.7	2.4	31.1	11.3	2.7
	-7	59.2	21.6	2.7	34.5	10.7	3.2
35	2	71.0	22.6	3.1	41.0	10.7	3.8
	7	87.2	21.7	4.0	50.3	10.5	4.8
	10	92.3	22.2	4.2	53.0	10.5	5.1
	18	107.0	22.6	4.7	61.0	10.4	5.8
	-20	34.1	26.1	1.3	20.6	14.7	1.4
	-15	42.2	25.6	1.6	24.7	13.0	1.9
	-10	51.0	25.3	2.0	30.0	12.6	2.4
40	-7	55.8	25.2	2.2	31.6	12.4	2.5
40	2	69.7	24.8	2.8	40.3	12.0	3.4
	7	86.0	24.2	3.6	49.4	11.7	4.2
	10	91.8	24.6	3.7	52.0	11.7	4.5
	18	106.0	25.1	4.2	60.0	11.6	5.2
	-20	29.1	29.2	1.0	21.7	15.1	1.4
	-15	40.8	28.7	1.4	23.9	14.7	1.6
	-10	50.2	28.3	1.8	29.0	14.3	2.0
45	-7	54.6	28.2	1.9	29.5	14.1	2.1
10	2	68.0	27.6	2.5	38.9	13.6	2.9
	7	84.9	25.9	3.3	48.6	13.2	3.7
	10	91.4	27.4	3.3	51.3	13.2	3.9
	18	105.0	28.0	3.8	59.3	13.1	4.5
	-20	- 36.2	- 32.2	- 1.1	- 22.9	- 14.1	- 1.6
	−15 −10	43.5	31.7	1.1	28.0	16.1	1.7
		52.7	31.7	1.4	28.6	15.9	1.7
50	-7 2	66.3	30.9	2.1	37.6	15.4	2.4
	7	86.2	31.3	2.8	47.7	15.5	3.1
	10	90.2	31.5	2.9	50.3	15.5	3.2
	18	103.0	32.1	3.2	58.2	15.4	3.8
	-20	-	-	-	-	-	
	-15	_	_	_	_	_	-
	-10	-	-	-	_	-	-
	-7	51.0	35.2	1.4	27.7	18.2	1.5
55	2	64.9	34.6	1.9	36.4	17.6	2.1
	7	85.8	34.7	2.5	46.5	17.6	2.6
	10	89.2	35.4	2.5	49.0	17.6	2.8
	18	102.0	36.0	2.8	57.0	17.6	3.2
	-20	-	-	-	-	-	-
	-15	-	-	-	-	-	-
	-10	-	-	-	-	-	-
60	-7	-	-	-	-	-	-
00	2	35.5	22.3	1.6	-	-	-
	7	45.5	21.3	2.1	-	-	-
	10	48.1	21.2	2.3	-	-	-
	18	55.8	21.2	2.6	-	-	-

= heating flow temperature (°C)
= source temperature (°C)
= heat output at full load (kW), measured in accordance with standard EN 14511

= power consumption for the overall unit (kW)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Output correction factors in Super Silent mode (whisper mode)


Flow temperature	°C	35	40	45	50	55	60
Heat output factor	-	0.83	0.82	0.81	0.80	0.80	0.80
Power consumption factor	-	0.83	0.72	0.72	0.74	0.74	0.74
COP factor	-	1.02	1.14	1.14	1.08	1.08	1.08

minimum output

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (70)

Output correction factors in Super Silent mode (whisper mode)

= cooling capacity at full load (kW), measured in accordance with standard EN 14511

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

Cooling capacity factor - 0.80
Power consumption factor - 0.78
EER factor - 1.04

Performance data - cooling

Maximum cooling capacity
Data according to EN 14511:2018

Belaria® fit (70)

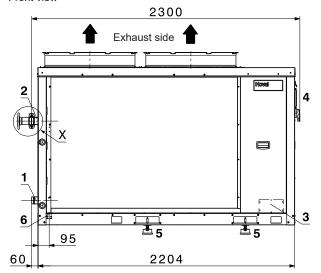
		Max	kimum outp	out	Minimum output			
t _{∨∟} °C	t _o °C	Q _k kW	P kW	EER	Q _k kW	P kW	EER	
	15	92.1	19.0	4.9	53.7	9.1	5.9	
	20	88.8	20.7	4.3	51.4	9.6	5.4	
	25	85.9	22.8	3.8	49.1	10.4	4.7	
7	30	82.9	25.0	3.3	46.8	11.4	4.1	
	35	80.4	27.6	2.9	44.5	12.7	3.5	
	40	76.1	30.6	2.5	42.2	14.3	3.0	
	44	47.0	18.6	2.5	40.4	16.0	2.5	
	15	100.0	19.3	5.2	58.2	9.1	6.4	
	20	96.7	21.1	4.6	55.0	9.5	5.8	
	25	93.1	23.1	4.0	7.0	1.4	5.1	
10	30	89.6	25.5	3.5	53.3	12.0	4.5	
	35	86.1	28.0	3.1	50.9	13.4	3.8	
	40	82.5	30.9	2.7	48.5	15.1	3.2	
	44	51.5	19.3	2.7	46.1	16.6	2.8	
	15	106.0	19.6	5.4	61.4	9.1	6.8	
	20	102.0	21.3	4.8	58.8	9.6	6.2	
	25	98.5	23.3	4.2	56.3	10.4	5.4	
12	30	94.9	25.6	3.7	53.8	11.4	4.7	
	35	91.2	28.2	3.2	51.4	12.8	4.0	
	40	87.6	31.1	2.8	49.0	14.4	3.4	
	44	54.7	18.7	2.9	46.0	16.1	2.9	
	15	110.0	19.3	5.7	64.2	9.1	7.0	
	20	106.0	21.0	5.1	61.1	9.3	6.6	
	25	103.0	23.1	4.5	58.6	10.1	5.8	
15	30	99.0	25.3	3.9	56.1	11.1	5.1	
	35	95.3	27.7	3.4	53.7	12.4	4.3	
	40	91.8	30.5	3.0	51.3	13.9	3.7	
	44	56.1	18.3	3.1	48.2	15.8	3.1	
	15	120.0	19.7	6.1	71.2	9.2	7.8	
	20	116.0	21.4	5.4	66.0	9.1	7.3	
	25	112.0	23.3	4.8	63.6	9.9	6.4	
18	30	108.0	25.4	4.3	61.0	10.9	5.6	
	35	104.0	28.0	3.7	58.5	12.2	4.8	
	40	100.0	30.4	3.3	56.1	13.8	4.1	
	44	62.2	18.0	3.5	54.1	15.2	3.6	
	15	126.0	19.6	6.4	73.1	9.2	8.0	
	20	122.0	21.4	5.7	70.6	8.9	7.9	
	25	118.0	23.3	5.1	67.1	9.7	6.9	
20	30	114.0	25.4	4.5	64.5	10.8	6.0	
	35	110.0	27.7	4.0	62.0	12.1	5.1	
	40	106.0	30.3	3.5	59.1	13.6	4.4	
	44	64.5	17.9	3.6	56.7	15.1	3.8	

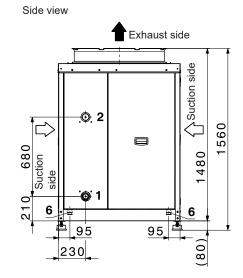
 $t_{_{VL}}$ = cooling water flow temperature (°C)

t_Q = source temperature (°C)

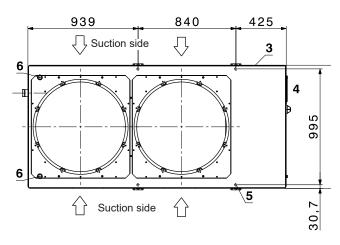
 \tilde{Q}_k = cooling capacity at full load (kW), measured in accordance with standard EN 14511

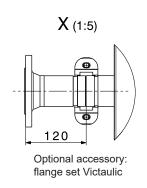
P = power consumption for the overall unit (kW)


EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

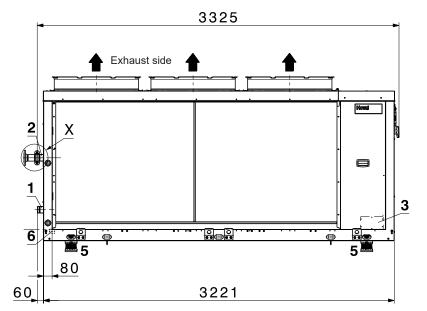

Output correction factors in Super Silent mode (whisper mode)

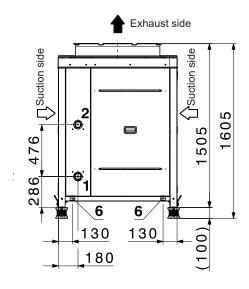
Cooling capacity factor - 0.80
Power consumption factor - 0.78
EER factor - 1.04


Belaria[®] fit (40,53) (Dimensions in mm)

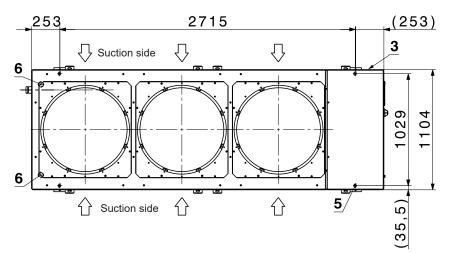

Front view

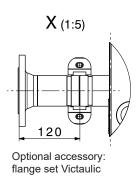
Rear




- Flow heating DN 50 Return heating DN 50
- 2
- 3 Electrical connection
- 4 Operator terminal bracket
- Hole for attachment of the heat pump
- Condensate drain DN 32

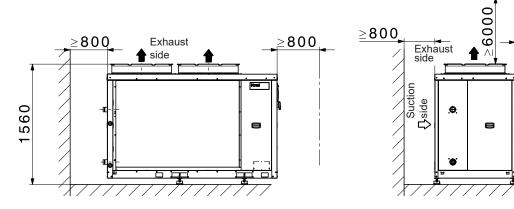
Belaria® fit (70) (Dimensions in mm)


Front view



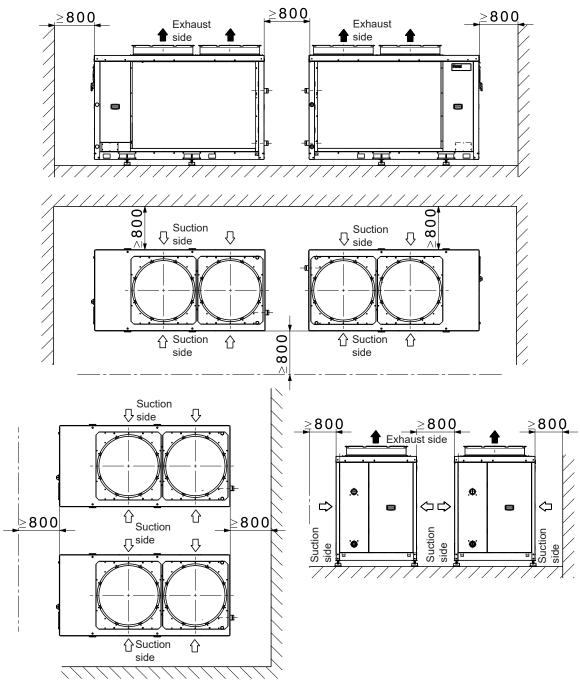
Side view

Rear

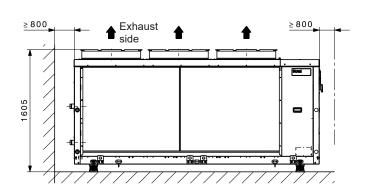


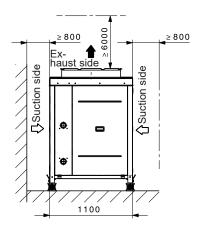
- Flow heating DN 50 Return heating DN 50
- 2 3 4 5 Electrical connection
- Operator terminal bracket
- Hole for attachment of the heat pump
- Condensate drain DN 32

2800

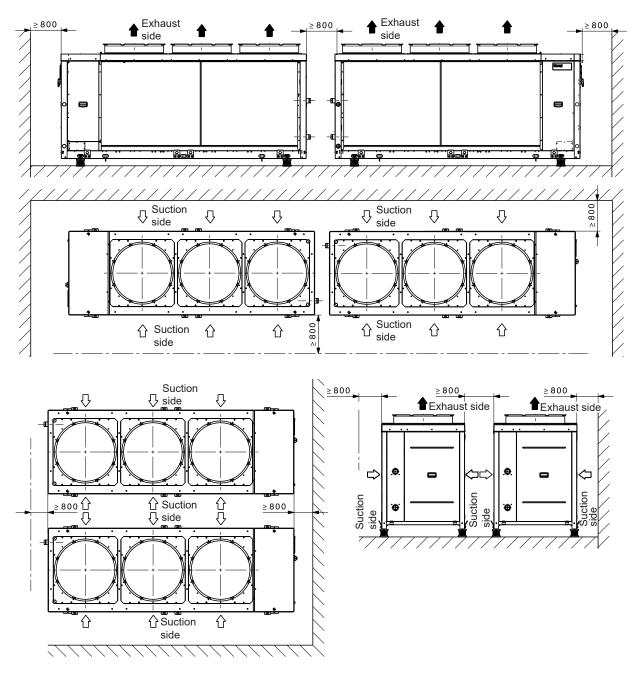

Suction side

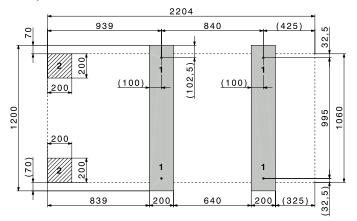
Space requirement Belaria® fit (40,53) (Dimensions in mm)



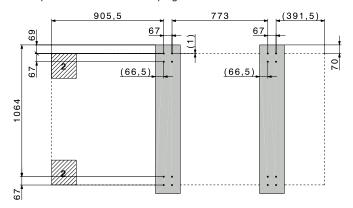

Minimum distances for cascade systems Belaria® fit (40,53)

(Dimensions in mm)

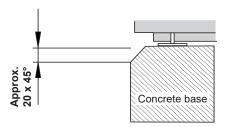

Space requirement Belaria® fit (70) (Dimensions in mm)


Minimum distances for cascade systems Belaria® fit (70)

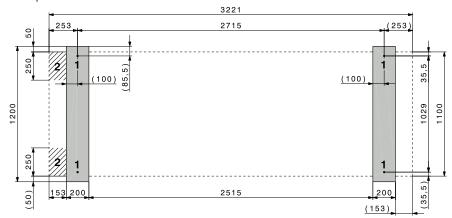
(Dimensions in mm)



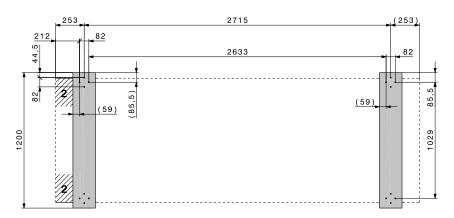
Base design Belaria® fit (40,53) (Dimensions in mm)


Base plan feet

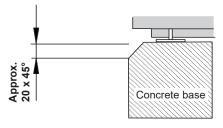
Base plan set of vibration-damping feet


The concrete base must have a level surface the size of the Belaria® fit. The base should have chamfered edges.

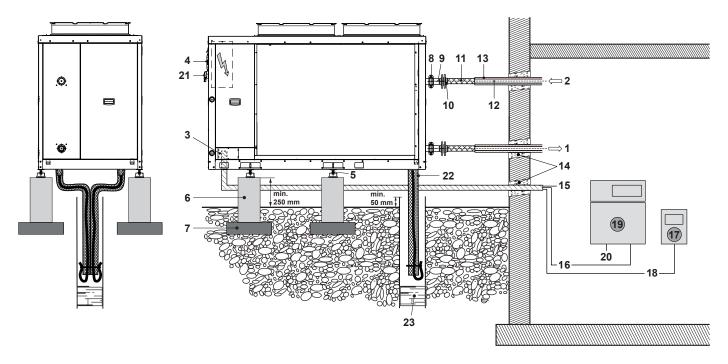
- Hole for attachment of the heat pump M12
- Condensate drain area


Base design Belaria® fit (70) (Dimensions in mm)

Base plan feet



- Hole for attachment of the heat pump M16
 - Condensate drain area


Base plan set of vibration-damping feet

The concrete base must have a level surface the size of the Belaria® fit. The base should have chamfered edges.

Configuration and connection diagram for the Belaria® fit

- Heating flow DN 50
- 2 Heating return DN 50
- 3 Electrical system feed-through
- 4 Operator terminal bracket (installation possible on site)
- 5 Vibration dampers (option)
- 6 Concrete base (on site)
- Vibration decouplers (on site)
- Victaulic coupling (included in the scope of delivery) 8
- Victaulic connection pipe (included in the scope of delivery)
- 10 Set of welded-on flanges (option)
- 11 Vibration decouplers (option)
- 12 Hydraulic line (on site)
- 13 Insulation (on site)
- 14 Feed-throughs (on site)
- 15 Main current

400 V/5-pin (configuration of cross-section on site) Connection to heat pump

16 Request On/Off 230 V/2-pin (see wiring diagram) Cooling mode On/Off 230 V/2-pin (see wiring diagram) Alarm 230 V/2-pin (see wiring diagram)

17 Operator terminal

18 Connection of heat pump operator terminal

line length < 40 m: 5 x 0.75 mm² shielded

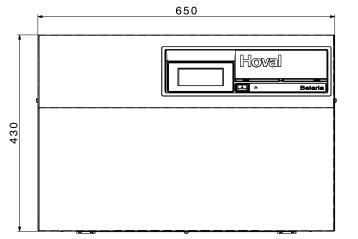
line length < 300 m: 3 x 0.75 mm² shielded – mains adapter is also supplied)

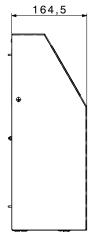
Electrical box (option) 19

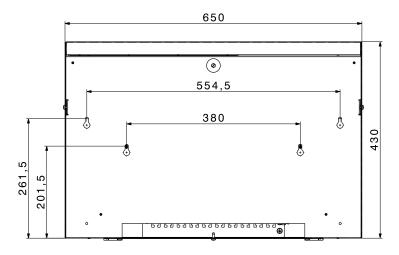
Control current 20 230 V/13 A/3-pin (see wiring diagram)

21 Main switch

Condensate drain DN 32 22


23 Seepage (duct/gravel layer) The piping from the boiler room to the heat pump must be configured by the installer. Connecting pipes are not included.


Notice


If the operator terminal is installed at a distance of more than 40 metres from the heat pump, the power supply unit supplied must be used.

Electrical box for Belaria® fit (Dimensions in mm)

Requirements and directives

The general requirements and directives listed in the chapter Engineering apply.

Set-up

- The Belaria® fit must be mounted outdoors.
 The installation location must be selected in accordance with the valid requirements and directives.
- Lines carrying water must be laid insulated and frost-proof.
- The installation location must be selected as close to the building as possible. Only short and simple routing of lines guarantees cost effectiveness and low heat losses.
- The installation location must be chosen in such a way that no noise pollution can occur (do not install near bedrooms, keep a distance from neighbours).
- There must be no building openings (windows, doors, shafts, ventilation openings or the like) within a radius of 1 m from the outdoor unit and no potential ignition sources must be present.
- Make sure that the installation location is well ventilated.
- DO NOT install the unit in the following places or locations:
 - In a potentially explosive atmosphere.
 - In places where there is a risk of fire due to escaping flammable gases (e.g. thinner or petrol) or airborne carbon fibres or flammable dust particles.
 - In places where corrosive gases (example: sulphuric acid gas) are produced.
 Corrosion of copper pipes and solder joints can lead to leaks in the refrigerant circuit.
- · Wall ducts into the building must be airtight.
- The heat pump must not be placed in or near floor recesses.
- The heat pump must not be placed closer than 1 m to the boundary of the property.
 Country-specific regulations must be observed.
- The air intake and air outlet sides must not be narrowed or covered.
- The lateral air supply and the air outlet to the top must be without obstruction.
- It is imperative that the minimum distances are observed (see Dimensions/Space requirement).
- The intake air must be free of impurities such as sand and aggressive substances such as ammonia, sulphur, chlorine etc.
- The heat pump must be installed on a load-bearing fixed structure.
- If the heat pump is installed at wind-prone locations, the alignment of the heat pump must be selected in such a way that the expected wind direction is at right angles to the suction direction.
- If an alternative installation in areas subject to strong winds cannot be avoided, an additional wind shield in the form of a hedge, for example, should be installed.
- The heat pump must always be installed on a solid surface in a horizontal position.
 This can be achieved by means of concrete hases
- The load-bearing capability must be adequate. The unit can be mounted with 4 vibration-damping adjustable feet.

- Air/water heat pumps generate condensate during operation. It must be ensured that the condensate produced can be absorbed to a sufficient extent by a gravel bed (see configuration and connection diagram).
- When air is discharged upwards, there is an increased frost hazard. Gutters, water pipes and water containers must not be situated in the immediate vicinity.
- The condensate drain must be discharged outside the building and must not be led into or through a building.
- To prevent damage caused by animals such as rodents or insects, all cable ducts must be properly sealed.
- The hydraulic lines from the heat pump can transmit structure-borne noise. Therefore, structure-borne noise decoupling should be provided, e.g. with compensators.

Flat roof installation

Flat roof installation of the Belaria® fit is possible under the following conditions:

- Strict compliance with safety measures regarding combustible refrigerants (see safety measures to be complied with).
- All standards concerning statics, wind load and access to roofs must be complied with.
- The heat pump must be firmly bolted onto the substructure (e.g. concrete base). The heat pump must be prevented from tilting.
- Minimum distance of the heat pump to the roof edge: 1.5 m (personal protection) + 0.8 m (working area refrigeration circuit).
- Accessibility for maintenance and repair
 work must be ensured. For work on the
 heat pump, a measuring case and test
 equipment, refrigerant bottle, etc. must
 be transported to the site, amongst other
 things. In addition to the safety equipment
 (fall protection devices, anchoring devices,
 etc.), this must also be taken into account for
 skylights, stairs, railings, etc.

Electrical connections

- The electrical connection must be carried out by a qualified technician and registered with the responsible energy supply company. The relevant electrical installation company is responsible for ensuring that electrical connection is carried out in accordance with standards and that safeguard measures are put in place.
- The mains voltage at the connection terminals of the heat pump must be 400 V or 230 V ± 10 %. The conductor cross-sections of the connection line must be checked by the electrical company carrying out the work.
- This fault-current circuit breaker must be of the all-current-sensitive type B (IΔN ≥ 300 mA). Country-specific requirements must be complied with. If the "fault-current circuit breaker" safeguard measure is implemented by the electrical company, a separate fault-current circuit breaker is recommended for the heat pumps. The specified RCCB types apply to the heat pump regardless of externally connected components (refer to assembly instructions, data sheets).

- Circuit breakers must be provided for the main circuit. The starting currents must be taken into account in the design.
- The electrical connection and feeder lines must be copper cables.
- Please refer to the wiring diagram for electrical details.
- The wall feedthrough should slope down from the inside to the outside.
- To avoid damage, the opening should be padded on the inside or, for example, lined with a PVC pipe.
- After installation, the wall opening must be sealed with a suitable sealing compound on site in compliance with fire protection regulations!
- The distance between the high and low voltage cables should be at least 50 mm.

Routing of the hydraulic connection lines

- If the hydraulic connection lines are laid in the ground, this must be done in a protective tube.
- Wall ducts must be sealed to the outside on site.
- After the hydraulic connection lines have been laid, they must be checked for damage and reinsulated. In case of cooling, condensate can form on the pipes.
- The hydraulic connection lines must be laid decoupled from the building and must never be laid flush-mounted.
- Shut-off valves must be installed on site in accordance with the corresponding hydraulic diagram. Opening the shut-off valves is only allowed immediately before commissioning!
- The danger of frost damage must be taken into account if there are prolonged power outages.
- False flow rates as a result of incorrect dimensions of the pipework, incorrect fittings or improper pump operation can cause damage to the heat pump.

Notice

If the main flow is interrupted during the utility lock, it is mandatory for the primary circuit to be implemented with a frost protection agent mixture.

Buffer storage tank

A buffer storage tank ensures optimal operating conditions for the heat pump:

- Hydraulic decoupling of the various volumetric flows from the heat pump and heat distribution system (heating)
- Absorbs the power reserves of the heat pump and reduces the switch-on frequency (cycling)
- Allows several heating circuits to be connected

The Hoval Belaria® fit air/water heat pump requires a buffer storage tank.

Minimum sizes of buffer storage tank

EnerVal type

 Belaria® fit (40)
 2000

 Belaria® fit (53)
 2000

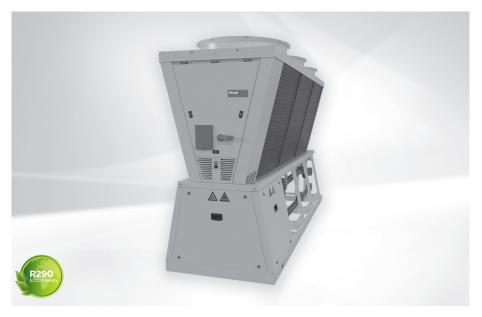
 Belaria® fit (70)
 1500 + 1500

The buffer storage tank must be made correspondingly larger in order to bridge periods when the electricity is switched off by the energy company, in particular in the case of radiator heating systems.

Further guidelines

see "Engineering"

Installation on heating side


- All pertinent laws, regulations and standards for heating house pipework and for heat pump systems must be complied with.
- A sludge separator must be installed in the heating flow and a filter ball valve in the heating return.
- The safety and expansion devices for closed heating systems must be provided in accordance with EN 12828.
- Dimensioning of the pipework must be done according to the required flow rates and given pressure drops.
- Ventilation must be provided at the highest points and drainage at the lowest points of the connection lines.
- To prevent energy losses, the connection lines must be insulated with suitable material.

Transport and storage

- When removing the packaging, check the heat pump for damage. If the heat pump was damaged during transport or storage, contact Hoval customer service, a service partner or a licensed specialist immediately. They must carry out a leak test with a suitable leak detector. In the event of a leak, the heat pump must be repaired.
- Store the outdoor unit in a cool place without fire hazard and without direct exposure to heat sources. The ambient temperature must not exceed 43 °C.
- The same regulations apply for storage as for installation (no recesses, ventilation pipes, ignition sources in the storage area).
- The heat pump must not be stored in closed rooms, cellars or garages.
- The heat pump is only allowed to be stored outdoors.
- During transport, ensure sufficient ventilation in the closed vehicle, also when parking and stopping.
- Storage in passageways, escape routes or in front of entrances or exits is not permitted.
- Ignition sources such as naked flames, switched-on gas appliances, electric heaters, etc. must be kept away from the unit.
- Transport and storage only in upright position. Protect from mechanical damage and from falling over or falling down (make sure the load is secure).

Hoval Belaria® fit WLP(44, 74) Air/water heat pump

- Modulating air/water heat pump in compact design for outdoor installation
- For heating and cooling in cascades up to 16 machines
- Refrigerant R290
- Output modulation 40-100 %
- Flow temperatures up to 75°C
- Supporting frame structure with powder coating (RAL 9001)
- External panelling made from zinc-magnesium metal sheet RAL 9001 painted
- Finned coil evaporator made from copper pipes arranged in staggered rows and mechanically expanded to better adhere to the fins
- Acrylic coating of evaporator to protect the exchanger from environments containing airborne of salt and other moderately aggressive agents
- Protection of evaporator from accidental contact with objects or persons by grilles
- Collecting trays to drain condensate, made of steel with zinc-magnesium surface treatment, painted with polyester powder RAL 9001, equipped with electric heating elements and drain
- Axial helical fans with reinforced plastic profiled blades, direct coupled to an electronically controlled brush-less DC motor, IP 54 version
- Hermetically sealed scroll compressor with inverter control, motor protection device for overheating and overcurrent's
- Braze-welded AISI 316 stainless steel plate heat exchangers with low refrigerant charge and large exchange surface
- Refrigerant circuit box complete with:
- · Electronic expansion valve
- 4-way cycle inversion valve
- · High pressure safety pressure switch
- · High- and low-pressure transducers
- Safety thermostat against compressor overheating
- · Refrigeration circuit leak detector
- Two leak sensors
- The sensor signals an alarm if the R290 (Propane) concentration exceeds 25% of the LFL (Lower flammable limit)
- ATEX exhaust fan
- Pre-ventilation selector switch. When the switch is activated, the exhaust fan switches on and cleaning the refrigerant circuit box from a potential explosive atmosphere
- · Water circuit including
- Safety valve 6 bar
- Flow switch
- Drain valve
- Temperature sensors
- Pressure relief valve
- Electrical box internally wired, ready for connection
- · Dry contacts for compressor status
- Dry contact for summer / winter change
- Dry contact for remote on-off control
- SG Ready contact
- EVU lock ready (remote on/off)
- · Serial port with Modbus (RS 485)
- Set-point modification via 0-10V or 4...20mA signal
- Main switch

Model range Hoval Belaria® fit WLP

Туре			Max. flow	Heat output 1)	Cooling capacity 1)
				A2W35	A35W18
	35 °C	55 °C	°C	kW	kW
(44)	A++	A++	75	25.1 - 44.0	36.7 - 55.7
(74)	A+++	A++	75	34.5 - 74.0	49.3 - 86.2
	A+++ → D A	\+++ → D			

1) Modulation range

Condensate drain

 It must be ensured that the condensate produced can be absorbed to a sufficient extent by a gravel bed (see configuration and connection diagram).

Hydraulic connections

Heating connections with supplied Victaulic couplings

Electrical connections

See installation instructions

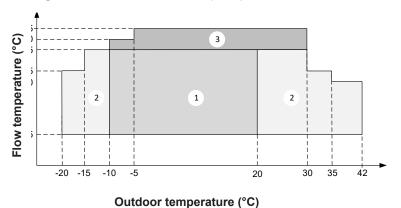
TopTronic® E controller (option)

Operator terminal

- Operator terminal with graphical display and function kevs
- Control and monitoring of the modulating heat pumps
- Setting the heating and cooling curves
- Selection of the operating mode: Standard, Silent and Super Silent
- Display of the current operating parameters
- The operator terminal can be installed in any room.
- · Can also be used as thermostat
- · Control also possible via Modbus
- Operation available in 16 languages
 Included in the scope of delivery of the Bela
- Included in the scope of delivery of the Belaria® fit WLP

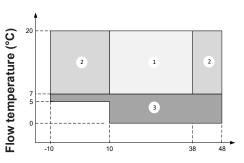
Refrigeration data

Belaria[®] fit WLP (44, 74)


Туре		(44)	(74)
Francis official control of the cont		A / A	A+++ / A++
• Energy efficiency class of the compound system with control 35 °C (A+++ → D)		A++ / A++ A++ / A++	
• Energy efficiency class of the compound system with control 55 °C (A+++ \rightarrow D)	%		A+++ / A++
• Energy efficiency heating "moderate climate" 35/55 °C ηS,h 1)	% SCOP	169 / 133	179 / 141
Seasonal coefficient of performance heating moderate climate 35/55 °C Forey officiency cooling pS c.	%	4.29 / 3.39	4.54 / 3.60
 Energy efficiency cooling ηS,c Seasonal energy efficiency cooling 	% SEER	186	209
- Seasonal energy enticiency couling	SLLIN	4.73	5.30
Max. performance data heating and cooling in acc. with EN			
Heat output A2W35	kW	44.0	73.9
Coefficient of performance A2W35	COP	3.4	3.4
Heat output A-7W35	kW	42.0	60.7
Coefficient of performance A-7W35	COP	2.6	2.6
Occiliant of performance A-7 Woo	001	2.0	2.0
Cooling capacity A35W18	kW	55.7	86.2
Energy efficiency ratio A35W18	EER	3.7	3.9
Cooling capacity A35W7	kW	49.9	72.8
Energy efficiency ratio A35W7	EER	2.6	3.7
Energy emolency ratio / 1004/7	LLIN	2.0	0.1
Sound data according to EN ISO 9614-2			
Sound power level 'Standard'	dB(A)	77	79
Sound power level 'Super Silent' 2)	dB(A)	69	69
Hydraulic data			
Maximum flow temperature	°C	75	75
• Nominal heating water quantity heating ΔT 5 K (A7W35)	m³/h	8.7	14.5
• Nominal heating water quantity heating ΔT 8 K (A7W35)	m ³ /h	5.4	9.1
• Nominal heating water quantity cooling ΔT 4 K (A35W7)	m ³ /h	10.8	18.1
• Nominal heating water quantity cooling ΔT 4 K (A35W18)	m³/h	12.0	18.6
Max. operating pressure on the heating side	bar	10	10
Flow/return connection	Victaulic	2"	2"
Built-in fan		2 x axial	3 x axial
Nominal air quantity	m³/h	38,000	53,000
Technical refrigeration data			
• Refrigeration		R290	R290
Refrigeration circuits		1	1
Compressor stages		modulating	modulating
Refrigerant filling quantity	kg	4.5	10.0
Compressor oil type	-	RMETIC OIL FW68S	10.0
Compressor oil filling quantity	I	3.3	6.6
Electrical data Connections	\//Ц-	2400/50	3-,400/50
	V/Hz	3~400/50	3~400/50
F.L.A Full load current at max admissible conditions F.L.A Full load power input at max admissible conditions.	A kW	53.3	65.8
• F.L.I Full load power input at max admissible conditions		34.0 53.3	41.8
M.I.C. Maximum inrush current	A A	53.3	65.8
Main current fuse	Α	Country-specific r	eguiations
Dimensions/Weight			
• Dimensions (H x B x T)	mm	2384 x 1094 x 2240	3402 x 1094 x 2240
• Weight	kg	737	1001

 $^{^{\}rm 1)}\,2$ % can be added for class II heat pump including control.

²⁾ Reduced heat outputs according to heating performance data


Application limits

Heating and hot water Belaria® fit WLP (44-74)

- 1. Normal operating range
- Unit operating range with automatic staging of the compressor capacity
- Unit operating range with automatic staging of the compresor capacity, sudden changes in water temperature not permitted

Cooling Belaria® fit WLP (44-74)

Outdoor temperature (°C)

- 1. Normal operating range
- Unit operating range with automatic staging of the compressor capacity
- Unit operating range with low water temperature, where it's mandatory the use of ethylene or propylene glycol

Sound pressure level

Standard

Туре	Sound pressure level frequency band [Hz]								Sound pressure level	Sound power level
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
Belaria® fit WLP (44)	67	66	66	69	73	71	65	61	59	77
Belaria® fit WLP (74)	68	68	68	71	74	72	67	62	60	79

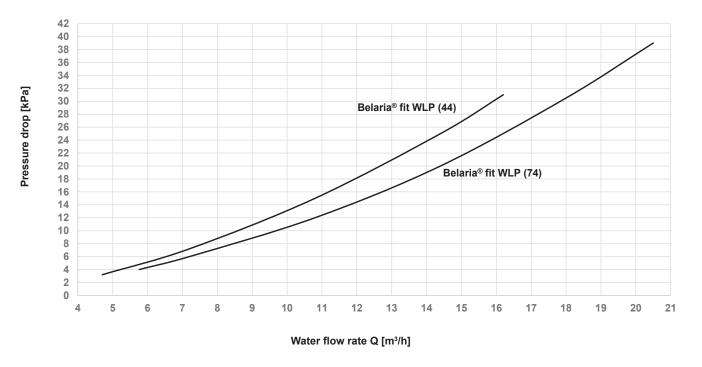
Super Silent (whisper mode)

Туре		Sound pressure level frequency band [Hz]							Sound pressure level	Sound power level
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
Belaria® fit WLP (44)	62	54	58	62	63	59	55	57	51	69
Belaria [®] fit WLP (74)	63	55	59	62	64	59	56	58	50	69

The sound levels refer to the nominal conditions of the heat pumps.

The sound pressure level refers to a distance of 1 meter from the outer surface of the unit during operation in the open.

The noise levels are determined according to the tensiometric method (EN ISO 9614-2).


The data refers to the following conditions in heating mode:

- Water in the internal heat exchanger = 30/35 °C
- Ambient temperature 7 °C

The data refers to the following conditions in cooling mode:

- Water in the internal heat exchanger = 12/7 °C
- Ambient temperature 35 °C

Pressure drop of the internal heat exchanger

The water pressure drops are calculated assuming an average water temperature of 7 °C.

Permitted water flow rates

	_	Belaria [®] fit WLP (44)	Belaria® fit WLP (74)				
Minimum flow rate	[m ³ /h]	5.4	6.5				
Maximum flow rate	[m ³ /h]	18.0	22.7				

Correction factors when using glycol

ETHYLENE GLYCOL percentage by weight % Freezing point °C Safety temperature	5	10	15	20	25	30	35	40	45	50
	-2	-3.9	-6.5	-8.9	-11.8	-15.6	-19	-23.4	-27.8	-32.7
	3	1	-1	-4	-6	-10	-14	-19	-23.8	-29.4
Heating/cooling correction factor Correction factor power consumption Correction factor for the pressure drop in the system	0.997	0.994	0.990	0.986	0.981	0.976	0.970	0.964	0.957	0.950
	0.999	0.999	0.998	0.997	0.996	0.996	0.995	0.994	0.993	0.993
	1.016	1.035	1.056	1.080	1.106	1.135	1.166	1.200	1.236	1.275
PROPYLENE GLYCOL percentage by weight % Freezing point °C Safety temperature	5	10	15	20	25	30	35	40	45	50
	-2	-3.9	-6.5	-8.9	-11.8	-15.6	-19	-23.4	-27.8	-32.7
	3	1	-1	-4	-6	-10	-14	-19	-23.8	-29.4
Heating/cooling correction factor Correction factor power consumption Correction factor for the pressure drop in the system	0.995	0.990	0.983	0.976	0.968	0.960	0.950	0.939	0.928	0.916
	0.999	0.997	0.995	0.993	0.991	0.988	0.986	0.983	0.980	0.977
	1.027	1.058	1.093	1.133	1.176	1.224	1.276	1.332	1.393	1.457

The specified correction factors refer to water-glycol mixtures that are used to prevent frost formation on the heat exchangers of the water circuit during the winter break.

For the exact specifications of the frost protection agent used, refer to the respective manufacturer's data sheet!

Heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit WLP (44)

Joiana			Maximum output Minimum outp				utput
t _{∨∟} °C	t _o °C	Q _h kW	P kW	COP	Q _h kW	P kW	СОР
	-20	19.2	8.4	2.29	14.1	6.2	2.26
	-15	24.9	10.1	2.47	15.9	6.3	2.52
	-10	38.7	15.7	2.46	18.2	6.4	2.84
35	-7	42.0	16.0	2.63	19.7	6.5	3.04
33	2	44.0	12.9	3.40	25.1	6.7	3.77
	7	50.3	13.2	3.80	28.7	6.8	4.25
	10	65.9	17.1	3.85	31.1	6.8	4.55
	18	72.9	17.4	4.19	35.8	6.9	5.20
	-20	19.4	10.0	1.94	14.6	7.7	1.90
	-15	24.9	11.9	2.10	16.3	7.8	2.10
	-10	38.3	18.0	2.13	18.2	7.8	2.33
4.5	-7	41.4	18.4	2.25	19.6	7.9	2.49
45	2	52.2	19.2	2.72	24.5	8.0	3.06
	7	55.0	17.2	3.20	27.9	8.1	3.43
	10	63.7	19.8	3.22	30.1	8.2	3.67
	18	71.2	20.1	3.55	34.6	8.2	4.20
	-20	19.6	12.0	1.64	15	9.4	1.60
	-15	24.8	14.1	1.76	16.8	9.5	1.77
	-10	30.7	16.5	1.86	18.4	9.6	1.92
	-7	32.9	16.8	1.96	19.5	9.7	2.02
55	2	40.8	17.4	2.34	23.9	9.9	2.41
	7	47.3	17.6	2.68	26.9	10.0	2.70
	10	49.4	17.8	2.77	28.9	10.0	2.89
	18	55.4	18.0	3.07	33.2	10.0	3.31
	-20	-	-	-		-	
	-15	24.9	15.2	1.64	17.0	10.4	1.63
	-10	30.7	17.6	1.74	18.7	10.6	1.77
	-7	32.8	17.9	1.83	19.7	10.6	1.85
60	2	40.3	18.7	2.16	23.8	10.9	2.19
	7	45.3	19.0	2.39	26.6	10.9	2.44
	10	48.7	19.1	2.55	28.5	10.9	2.61
	18	54.8	19.3	2.84	32.7	11.0	2.98
	-20	-	_	-	_	-	-
	-15	-	-	-	-	-	-
	-10	27.8	17.8	1.56	19.1	12.6	1.51
	-7	29.6	18.2	1.63	20.1	12.7	1.58
70	2	35.7	18.8	1.90	23.5	12.8	1.83
	7	39.8	19.0	2.09	26.1	12.9	2.02
	10	42.5	19.1	2.22	27.8	12.9	2.15
	18	47.4	19.3	2.45	31.8	13.0	2.44
	-20	_	-	-		_	
	-15	-	_	-		_	
	-10	_	_	_		_	
	-7	26.4	17.4	1.52	20.2	13.7	1.47
75	2	31.4	17.7	1.77	23.5	14.0	1.68
	7	34.9	18.0	1.94	25.9	14.1	1.84
		0 1.0	. 5.0				
	10	37.2	18.1	2.05	27.5	14.1	1.95

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

P = power consumption for the overall unit (kW)

COP = COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Integrated heating capacities

External exchanger inlet air temperature °C -15...2
Heating capacity multiplication coefficient 0.93

The integrated heating capacity is the actual heating capacity, including the impact of any defrosting cycles.

This is obtained by multiplying the thermal capacity supplied Qh by the coefficients in the table.

During prolonged heat pump operating mode with negative ambient temperature, it is important to encourage the evacuation of water produced by the defrosting cycles to avoid the build-up of ice near the unit's base.

Be careful to ensure that this does not constitute a danger to objects or people.

Performance data - cooling

Cooling capacity
Data according to EN 14511:2018

Belaria® fit WLP (44)

		Ма	ximum out	out	Mi	nimum out	out
t,,,	t _o	\mathbf{Q}_{k}	Р	EER	\mathbf{Q}_{k}	P	EER
t _{∨∟} °C	t _o °C	kŴ	kW		kŴ	kW	
	15	61.1	15.6	3.91	28.9	5.3	5.44
	20	58.7	16.7	3.52	28.0	5.7	4.94
	25	56.9	17.8	3.19	27.0	6.1	4.43
_	30	51.5	19.7	2.61	25.9	6.6	3.93
5	35	49.3	21.1	2.34	24.8	7.2	3.46
	40	46.7	22.3	2.09	23.6	7.8	3.02
	44	39.4	18.3	2.15	22.7	8.4	2.70
	48	37.7	19.3	1.95	21.7	9.0	2.40
	15	65.1	16.0	4.06	31.4	5.4	5.81
	20	62.9	17.1	3.68	30.4	5.7	5.29
	25	60.4	18.2	3.31	29.3	6.2	4.76
	30	56.5	20.1	2.81	28.2	6.7	4.23
7	35	50.0	19.3	2.59	27.0	7.2	3.73
	40	50.5	22.9	2.21	25.7	7.9	3.26
	44	42.8	18.7	2.29	24.7	8.5	2.92
	48	41.0	19.7	2.08	23.6	9.1	2.60
	15	76.0	17.2	4.42	36.3	5.6	6.51
	20	73.1	18.2	4.01	35.1	5.9	5.95
	25	70.0	19.3	3.63	33.9	6.3	5.37
	30	67.5	20.6	3.28	32.6	6.8	4.79
12	35	61.2	22.8	2.69	31.2	7.4	4.23
	40	57.9	23.9	2.42	29.8	8.0	3.71
	44	49.4	19.4	2.54	28.6	8.6	3.33
	48	47.3	20.3	2.33	27.4	9.2	2.97
	15	81.9	17.9	4.57	39.3	5.7	6.94
	20	78.8	18.9	4.17	38.1	6.0	6.35
	25	75.6	19.9	3.79	36.8	6.4	5.74
	30	72.2	21.0	3.43	35.4	6.9	5.13
15	35	58.2	18.0	3.24	33.9	7.5	4.54
	40	62.5	24.6	2.54	32.4	8.1	3.99
	44	53.5	19.9	2.69	31.2	8.7	3.58
	48	51.3	20.8	2.47	26.9	8.4	3.20
	15	87.9	18.6	4.72	43.3	9.7	4.47
	20	84.7	19.6	4.32	42.0	6.1	6.86
	25	81.6	20.7	3.95	40.6	6.5	6.22
	30	78.3	21.8	3.60	39.2	7.0	5.58
18	35	55.7	15.1	3.68	36.7	7.6	4.85
	40	53.9	15.7	3.44	36.0	8.3	4.35
	44	51.9	16.4	3.16	34.6	8.8	3.91
	48	43.3	14.0	3.09	33.2	9.5	3.49
	15	94.8	19.5	4.86	45.9	5.9	7.81
	20	91.3	20.4	4.48	44.5	6.2	7.18
	25	87.7	21.4	4.10	43.0	6.6	6.51
	30	83.9	22.4	3.74	41.4	7.1	5.84
20	35	59.6	15.1	3.95	39.8	7.7	5.18
	40	50.7	12.9	3.93	38.1	8.4	4.56
	44	48.9	13.6	3.59	36.0	8.9	4.05
	48	41.0	11.7	3.49	35.2	9.6	3.67
	40	41.0	11.7	3.48	JJ.Z	9.0	3.07

= cooling water flow temperature (°C)

= source temperature (°C) = cooling capacity at full load (kW), measured in accordance with standard EN 14511

P = power consumption for the overall unit (kW)

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

Output correction factors in Super Silent mode (whisper mode)

0.75 Cooling capacity factor Power consumption factor 0.75 EER factor 1.00

Heat output allowing for defrosting losses Data according to EN 14511:2018

Belaria® fit WLP (74)

	(/	Ma	ximum out	out	Mi	nimum outp	out
t _{∨∟} °C	t₀ °C	$\mathbf{Q}_{_{\mathbf{h}}}$	Р.	COP	\mathbf{Q}_{h}	Р.	COP
°C	°C	kW	kW		kŴ	kW	
	-20	27.0	11.9	2.26	18.6	8.2	2.28
	-15	36.0	14.6	2.47	21.5	8.2	2.63
	-10	56.2	23.3	2.41	24.7	8.1	3.05
0.5	-7	60.7	23.4	2.59	26.9	8.1	3.33
35	2	73.9	22.1	3.35	34.5	7.9	4.39
	7	84.2	22.3	3.77	39.9	7.7	5.15
	10	93.8	24.6	3.82	43.4	7.6	5.68
	18	107.0	24.8	4.31	51.9	7.4	6.97
	-20	26.8	13.9	1.92	18.8	9.9	1.90
	-15	35.4	16.9	2.10	21.4	9.9	2.17
	-10	54.9	26.7	2.06	24.3	9.8	2.49
	-7	58.9	27.0	2.18	26.3	9.7	2.71
45	2	75.5	28.2	2.68	33.2	9.4	3.52
	7	85.8	28.3	3.03	38.0	9.2	4.12
	10	90.0	28.5	3.16	41.3	9.1	4.53
	18	102.0	28.6	3.57	49.3	8.8	5.59
	-20	26.9	16.3	1.65	18.9	12.0	1.58
	-15	34.7	19.5	1.78	21.4	11.9	1.80
	-10	49.8	28.1	1.77	24.0	11.8	2.03
	-7	53.2	28.4	1.87	25.8	11.7	2.20
55	2	67.2	29.6	2.27	31.9	11.4	2.80
	7	76.5	29.8	2.57	36.2	11.2	3.24
	10	80.0	29.9	2.68	39.1	11.0	3.54
	18	91.6	29.8	3.07	46.4	10.7	4.32
	-20	-	-	-	-	-	-
	-15	34.5	20.9	1.65	21.5	13.1	1.64
	-10	49.4	29.9	1.65	24.0	12.9	1.86
	-7	52.5	30.5	1.72	25.6	12.9	1.99
60	2	65.8	31.6	2.08	31.4	12.5	2.51
	7	72.9	31.8	2.29	35.4	12.3	2.88
	10	78.4	31.9	2.46	38.2	12.2	3.14
	18	89.3	31.9	2.80	45.3	11.9	3.82
	-20	-	-	-	-	-	-
	-15	_	_	_	_	-	_
	-10	38.2	24.8	1.54	23.9	15.5	1.54
	-7	40.7	25.1	1.62	25.5	15.4	1.66
70	2	49.5	25.8	1.92	30.5	15.0	2.03
	7	56.1	25.7	2.18	34.0	14.8	2.29
	10	59.3	25.7	2.31	36.5	14.7	2.48
	18	68.2	25.4	2.69	43.0	14.4	2.98
	-20	-		-	-	-	-
	-15	_		_	_		_
	-10	_		_	_		_
	-7	35.8	23.2	1.54	25.3	16.8	1.51
75	2	42.6	23.5	1.81	30.2	16.5	1.83
	7	47.6	23.3	2.04	33.4	16.3	2.05
	10	51.4	23.2	2.22	35.7	16.2	2.20
	18	58.8	22.8	2.58	42.0	16.0	2.62
0.0. 1. 0	7. ((00)	0	00	0	. 5.0	

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

P = power consumption for the overall unit (kW)

COP = COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Integrated heating capacities

External exchanger inlet air temperature °C -15...2 Heating capacity multiplication coefficient 0.93

The integrated heating capacity is the actual heating capacity, including the impact of any defrosting cycles.

This is obtained by multiplying the thermal capacity supplied Qh by the coefficients in the table.

During prolonged heat pump operating mode with negative ambient temperature, it is important to encourage the evacuation of water produced by the defrosting cycles to avoid the build-up of ice near the unit's base.

Be careful to ensure that this does not constitute a danger to objects or people.

Performance data - cooling

Cooling capacity

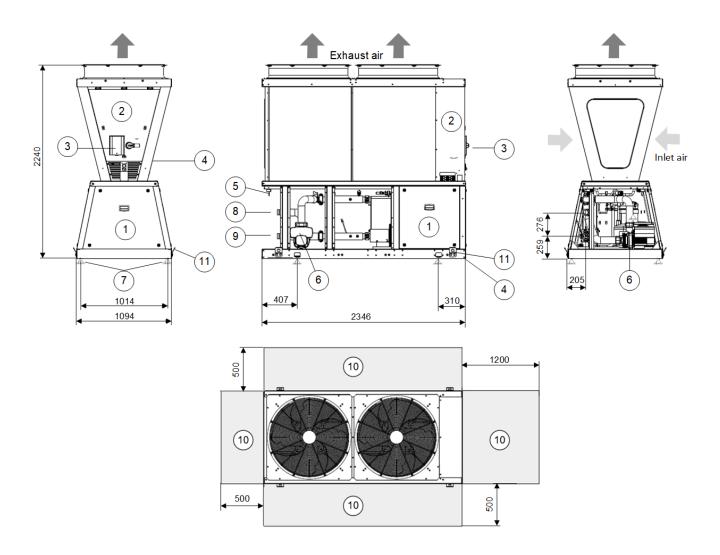
Data according to EN 14511:2018

Belaria® fit WLP (74)

	, ,	Ma	ximum outp	out	Mi	nimum out	out
t _{vi}	t _o	\mathbf{Q}_{k}	Р .	EER	\mathbf{Q}_{k}	Р .	EER
t _{∨∟} °C	t _o °C	kŴ	kW		kŴ	kW	
	15	81.3	20.2	4.03	37.5	6.0	6.27
	20	77.4	21.8	3.55	36.1	6.4	5.66
	25	73.4	23.5	3.13	34.5	6.8	5.04
_	30	69.3	25.2	2.75	33.0	7.4	4.43
5	35	65.2	27.1	2.41	31.4	8.1	3.86
	40	61.2	29.0	2.11	29.7	8.9	3.34
	44	55.6	28.1	1.98	28.3	9.6	2.96
	48	52.4	29.4	1.78	26.9	10.3	2.61
	15	87.0	20.5	4.24	41.0	6.0	6.86
	20	83.0	22.1	3.75	39.5	6.4	6.22
	25	79.0	23.8	3.32	37.8	6.8	5.55
7	30	74.8	25.5	2.93	36.1	7.4	4.90
1	35	72.8	27.4	2.66	34.4	8.1	4.27
	40	66.6	29.3	2.27	32.5	8.8	3.70
	44	60.8	28.3	2.15	31.1	9.5	3.28
	48	57.6	29.8	1.93	29.6	10.2	2.89
	15	103.0	21.7	4.75	47.9	6.0	8.03
	20	98.1	23.2	4.23	46.1	6.3	7.32
	25	93.2	24.8	3.76	44.2	6.7	6.56
12	30	88.3	26.4	3.34	42.3	7.3	5.82
12	35	83.3	28.2	2.95	40.3	7.9	5.09
	40	78.3	30.1	2.60	38.2	8.6	4.43
	44	71.5	28.8	2.48	36.6	9.3	3.93
	48	67.7	30.4	2.23	34.9	10.0	3.48
	15	111.0	22.3	4.98	52.3	6.0	8.77
	20	106.0	23.8	4.46	50.3	6.3	8.03
	25	101.0	25.3	3.99	48.3	6.7	7.23
15	30	96.0	27.0	3.55	46.2	7.2	6.42
10	35	87.0	26.1	3.33	44.1	7.8	5.64
	40	85.4	30.5	2.80	41.9	8.5	4.91
	44	78.2	29.2	2.68	40.2	9.2	4.36
	48	74.1	30.6	2.42	38.3	9.9	3.86
	15	120.0	23.1	5.20	56.7	5.9	9.53
	20	115.0	24.6	4.68	55.9	6.2	8.99
	25	110.0	26.1	4.21	53.8	6.6	8.13
18	30	104.0	27.5	3.78	51.6	7.1	7.25
. •	35	86.2	21.9	3.94	49.3	7.7	6.39
	40	73.5	18.2	4.03	49.9	9.0	5.57
	44	70.6	19.2	3.67	45.0	9.1	4.96
	48	60.3	16.3	3.70	43.0	9.8	4.40
	15	126.0	23.5	5.37	59.4	5.9	10.00
	20	121.0	25.0	4.84	59.6	6.2	9.61
	25	115.0	26.4	4.36	57.2	6.6	8.71
20	30	110.0	28.1	3.92	54.9	7.1	7.77
-	35	82.6	17.2	4.79	52.4	7.7	6.84
	40	69.8	14.6	4.79	49.9	8.4	5.97
	44	67.0	15.4	4.35	47.9	9.0	5.32
	48	56.0	13.0	4.31	45.9	9.7	4.72

= cooling water flow temperature (°C)

= source temperature (°C) = cooling capacity at full load (kW), measured in accordance with standard EN 14511


= power consumption for the overall unit (kW)

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

Output correction factors in Super Silent mode (whisper mode)

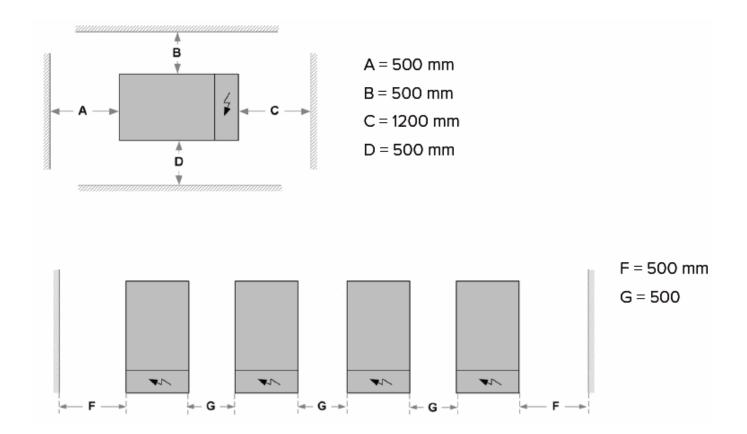
0.75 Cooling capacity factor Power consumption factor 0.80 EER factor 1.03


Belaria® fit WLP (44) (Dimensions in mm)

- Compressor compartment
- 2. Electrical panel
- 3. Unit control keypad
- Power input 4.
- 5.
- Condensate drain
 Water pump (not in scope of supply) 6.
- 7. Fixing point
- 8.
- Water inlet 2" Victaulic Water outlet 2" Victaulic Functional spaces 9.
- 10.
- Lifting bracket (removable)

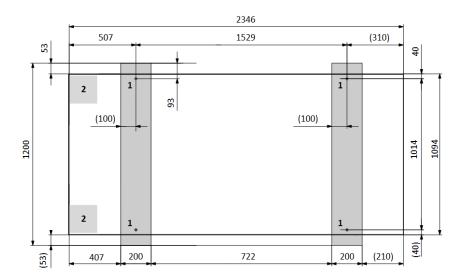
Length	mm	2384
Depth	mm	1094
Height	mm	2240
W1 Supporting point	kg	226
W2 Supporting point	kg	145
W3 Supporting point	kg	233
W4 Supporting point	kg	153
Operation weight	kg	757
Shipping weight	kg	737

Belaria® fit WLP (74) (Dimensions in mm)



- Compressor compartment
- 2 Electrical panel
- 3 Unit control keypad
- 4 Power input
- 5 Condensate drain
- Water pump (not in scope of supply)
 Fixing point
 Water inlet 2" Victaulic
 Water outlet 2" Victaulic 6
- 7
- 8
- 9
- Functional spaces 10
- Lifting Bracket (removable)

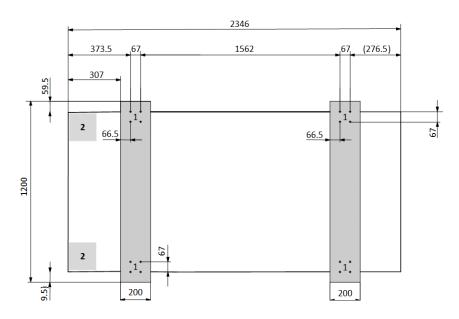
Length	mm	3402
Depth	mm	1094
Height	mm	2240
W1 Supporting point	kg	306
W2 Supporting point	kg	199
W3 Supporting point	kg	312
W4 Supporting point	kg	205
Operation weight	kg	1021
Shipping weight	kg	1001



Space requirement Belaria® fit WLP (44, 74) (Dimensions in mm)

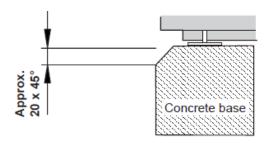
Base design Belaria® fit WLP (44) (Dimensions in mm)

Base design for installations without vibration dampers

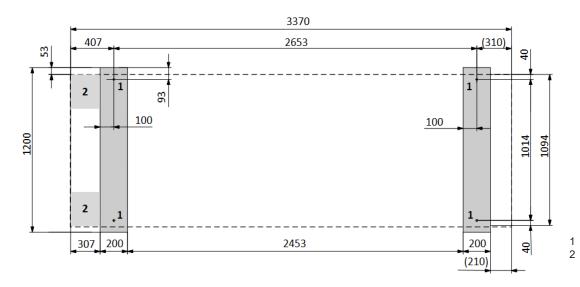


Boreholes for screws

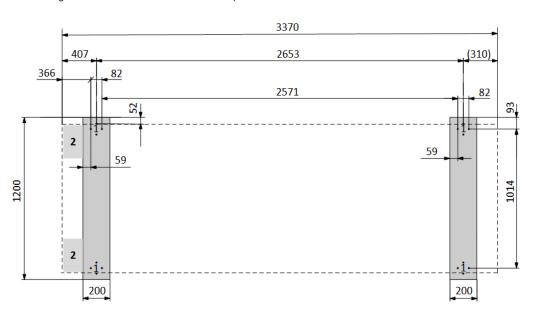
2


Condensate drain area

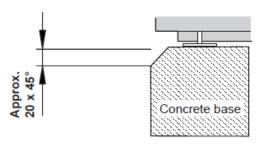
Base design for installations with vibration dampers


- Boreholes for screws
- Condensate drain area

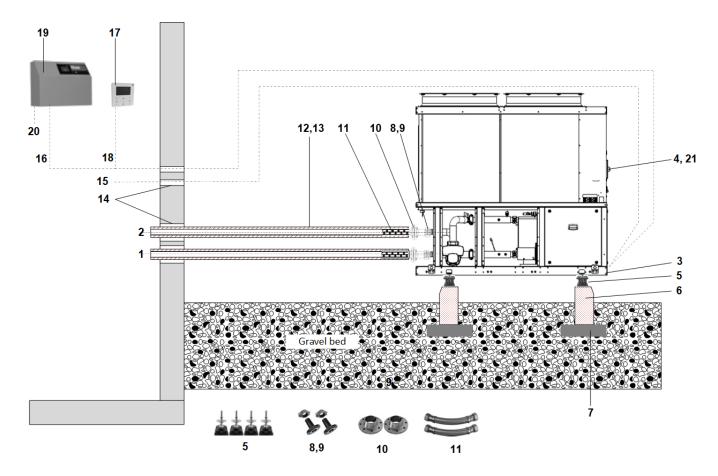
The concrete base must have a level surface the size of the Belaria® fit. The base should have chamfered edges


Base design Belaria® fit WLP (74) (Dimensions in mm)

Base design for installations without vibration dampers


Boreholes for screws Condensate drain area

Base design for installations with vibration dampers



- Boreholes for screws
- Condensate drain area

The concrete base must have a level surface the size of the Belaria® fit. The base should have chamfered edges

Configuration and connection diagram for the Belaria® fit WLP (44, 74)

- Heating flow DN 50 1
- Heating return DN 50
- 2 Electrical system feed-through
- 4 Operator terminal bracket (installation possible on site)
- 5 Vibration dampers (option)
- 6 Concrete base (on site)
- 7 Vibration decouplers (on site)
- 8 Victaulic coupling (included in the scope of delivery)
- Victaulic connection pipe (included in the scope of delivery) 9
- 10 Set of welded-on flanges (option)
- Vibration decouplers (option) 11
- Hydraulic line (on site) 12
- Insulation (on site) 13
- 14 Feed-throughs (on site)
- 15 Main current
- 16

Connection to heat pump

Request On/Off Cooling mode On/Off 230 V/2-pin (see wiring diagram) 230 V/2-pin (see wiring diagram) 230 V/2-pin (see wiring diagram)

400 V/5-pin (configuration of cross-section on site)

Alarm

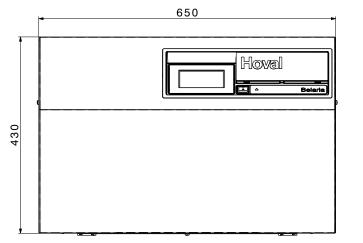
17

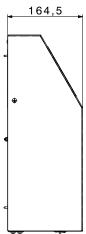
Operator terminal

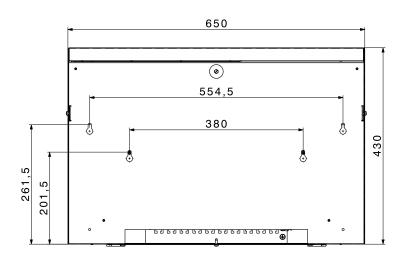
Connection of heat pump operator terminal 18

> line length < 40 m: 5 x 0.75 mm² shielded line length < 300 m: 3 x 0.75 mm² shielded

- 19 Electrical box
- Control current 20 230 V/13 A/3-pin (see wiring diagram)
- 21 Main switch
- 22 Condensate drain DN 32


The piping from the boiler room to the heat pump must be configured by the installer. Connecting pipes are not included.


Notice


If the operator terminal is installed at a distance of more than 40 metres from the heat pump, the power supply unit supplied must be used.

Information on safety and installation, see manual 'Technical information, Installation instruction' (WLP-01-2025)

Electrical box for Belaria® fit WLP (Dimensions in mm)

Belaria® fit WLH (113-220)

High-efficiency air-cooled heat pump certified by Eurovent, built according to ISO 9001 quality standards, for outdoor installation.

Compressor

Hermetic scroll compressors with vapour injection, controlled by an inverter, complete with motor protection against overheating, overcurrent and excessive discharge gas temperatures. Mounted on anti-vibration rubber pads and complete with oil charge. The compressors are equipped with a sound-absorbing cover, which reduces noise emissions and provides thermal insulation.

Structure

The load-bearing structure and base are made entirely of sturdy 1.2mm thick steel sheet, with hot-dip galvanising and polyester powder coating in RAL9001 for visible parts, which guarantees excellent mechanical characteristics and high resistance to corrosion over time.

Panelling

External panelling in 1.2mm thick steel sheet, with hot-dip galvanised surface treatment and polyester powder coating in RAL9001, which ensures superior corrosion resistance in outdoor installations and eliminates the need for periodic repainting. Easily removable panels to allow full access to internal components.

Internal heat exchanger

Direct expansion heat exchanger with brazed stainless steel plates (AISI 316), in a gasketless pack using copper as the brazing material, with low refrigerant content and high heat exchange surface area, complete with: 17 mm thick external anti-condensation thermal insulation in sintered expanded polypropylene; antifreeze resistance to protect the water side of the exchanger to prevent ice formation if the water temperature falls below a preset value.

Fan

Helical fans with profiled sickle-shaped blades in ABS resin ASG-20 with 20% glass fibre content, directly coupled to an electronically controlled motor (IP23), driven by brushless DC (BLDC) motor. The absence of brushes (brushless) and the special power supply increase both service life and efficiency. This reduces consumption by up to 50%. The fans are housed in aerodynamically shaped outlets to increase efficiency and minimise noise levels and are equipped with safety grilles. Both the fans and the grilles are designed using CFD technology. Supplied with variable speed control.

Refrigeration circuit

Two independent refrigeration circuits made of copper, brazed and assembled in the factory, complete with:

- Electronic expansion valve
- 4-way cycle reversal valve
- High pressure safety switch
- Low pressure safety switch
- Liquid receiver
- Oil separator
- Liquid separator
- Pressure transducer
- Safety thermostat against compressor discharge overheating
- Temperature sensors
- Low pressure safety valve

Models Belaria® fit WLH size	Refrigerant	Max flow temperature °C	Heat output max A7W35 kW	Cooling capacity max A35W7 kW
(113) / CP (113)	R32	60	135	114
(140) / CP (140)	R32	60	163	136
(180) / CP (180)	R32	60	192	157
(220) / CP (220)	R32	60	240	208

· Economiser heat exchanger

Heat recovery

- Configuration that allows free hot water production during cooling operation
- Reduction in condensation temperature: under nominal conditions, cooling capacity increases by approximately 3.2% and the power absorbed by the compressors is reduced by 3.6%.

Electrical panel

The power section includes:

- Main disconnect switch
- General protection fuses
- Isolation transformer for the auxiliary circuit power supply
- Auxiliary component protection fuses
- AC filter on the power supply
- Power supply phase sequence protection
- Compressor overcurrent protection
- Compressor overload protection
- Malfunction protection sensor Phase monitor

The control section includes:

- Compressor protection and timing
- Relay for remote transmission of cumulative alarm signals
- Defrost cycle optimisation
- Condensation control
- Dry contact for remote on-off control
- Volt free contact for remote SUMMER/WIN-TER command

The control keypad includes:

- · Interface terminal with graphic display
- Multifunction keys for ON/OFF control
- Heat, cool or auto operating mode
- Alarm display and reset
- Daily or weekly programming
- Power supply for remote control
- Serial port with Modbus output (RS 485) for remote communication

Hydraulic circuit

- Temperature sensors
- Drain valve
- Anti-freeze resistance to protect the water side heat exchanger and prevent ice formation if the water temperature drops below a preset value
- Water side differential pressure switch
- Vent valve

Test

Unit undergoes functional testing at the factory at the end of the production line and pressure testing of the refrigeration circuit pipes (with nitrogen and hydrogen) before shipping.

Features - Supply

- Refrigerant R-32
- Treated fluid consisting of water only
- · Hydronic unit on the user side
- Inverter pumps available only in CP version
- Power supply voltage 400/3/50 without neutral
- Super-silent acoustic configuration
- Delivery of units with full refrigerant charge
- Exchanger approvals CE= PED - European testing
- Battery with hydrophilic aluminium fins
- High-efficiency DC fan
- Plate heat exchanger
- Electronic expansion valves
- Minimum outdoor air temperature down to -20°C
- Minimum outdoor air temperature with unit unit powered but not operating down to -20°C
- Minimum outdoor air temperature for storage down to -20°C
- Pump unit on the user side with 1 high head inverter pump available only in CP version
- Steel mesh filter on the water side
- Isolating switch on board unit
- Phase monitor
- RS485 serial port with Modbus protocol
- Anti-vibration mounts
- Hail protection grilles

Warranty - 24 months

Mandatory commissioning and scheduled maintenance by an authorised Hoval Service Centre.

Belaria® fit WLH (113-220)

Acoustic configuration Super-silent EN

Size		(113)	(140)	(180)	(220)
Heating					
Heating capacity 8)	kW	130	170	210	268
Compressor power input 8)	kW	39.2	50.9	61.5	82.1
Total power input ²⁾	kW	42.8	54.6	67	87.5
• COP ⁸⁾	-	3.03	3.11	3.13	3.06
Water flow rate (user side) ⁸⁾	I/s	6.3	8.2	10.1	12.9
 Internal exchanger pressure drop⁸⁾ 	kPa	25.2	29.2	33.7	52.8
 Heating capacity EN14511:2018 9) 	kW	130	170	210	268
 Total power input EN 14511:2018⁹⁾ 	kW	43.2	55.1	67.7	88.7
• COP EN 14511:2018 9)	-	3.01	3.09	3.1	3.02
 SCOP for average climate W35⁶⁾ 	-	4.12	4.07	4.15	4.11
SCOP for average climate W55 ⁶⁾	-	2.88	2.88	2.87	2.93
Cooling					
Cooling capacity 1)	kW	114	136	157	208
Compressor power input 1)	kW	46.4	60.7	67.9	90.1
Total power input ²⁾	kW	48.6	62.9	71.2	93.4
 Partial recovery heating capacity³⁾ 	kW	38.5	47.3	54	71.6
• EER 1)	-	2.35	2.16	2.21	2.23
Water flow rate (user side) 1)	I/s	5.4	6.5	7.5	9.9
 Internal exchanger pressure drop ¹⁾ 	kPa	19.3	18.9	19.2	32.2
 Cooling capacity EN 14511:2018 ⁴⁾ 	kW	114	136	157	208
 Total power input EN 14511:2018 ⁴⁾ 	-	48.9	63.2	71.5	94.1
• EER EN 14511:2018 ⁴⁾	-	2.33	2.15	2.2	2.21
• SEER ⁶⁾	-	4.4	4.31	4.34	4.3
• SEPR 7)	-	5.44	5.38	5.39	5.25
 Cooling capacity AHRI 550/590⁵⁾ 	kW	114	136	157	208
 Compressor power input AHRI 550/590⁵⁾ 	kW	48.6	62.9	71.2	93.4
• COPR 5)	-	2.35	2.16	2.21	2.23
• IPLV ⁵⁾	-	4.16	4.06	4.09	4.08

The Product complies with the European ErP (Energy Related Products) Directive, which includes Commission Delegated Regulation (EU) No. 2016/2281 Commission, also known as Ecodesign LOT21. It contains fluorinated greenhouse gases (GWP 675)

- ¹) Data refers to the following conditions:
- Water temperature at the internal heat exchanger = 12/17 °C
- Air temperature entering the external heat exchanger = 35 °C
- Evaporator fouling factor = 0.44 x 10⁽⁻⁴⁾ m² K/W
- ²⁾ The Total Power Consumption does not take into account the portion relating to the pumps and necessary to overcome the pressure drops for the circulation of the solution inside the exchangers.
- 3) Recovery exchanger water temperature = 40/45 °C
- ⁴⁾ Data calculated in accordance with Standard EN 14511:2018 referring to the following conditions:
- Water temperature at the internal exchanger = 12/17 °C
- Air temperature entering the external heat exchanger = 35 °C
- ⁵⁾ Data calculated in accordance with AHRI Standard 550/590 under the following conditions:
- Water temperature at the internal exchanger = 6.7 °C
- Water flow rate = 0.043 l/s per kW
- Inlet air temperature at external heat exchanger = 35 °C
- Evaporator fouling factor = 0.18 x 10⁽⁻⁴⁾ m² K/W
- ⁶⁾ Data calculated in accordance with EN 14825:2018
- 7) Data calculated in accordance with EU Regulation 2016/2281
- 8) Data referring to the following conditions:
- Internal heat exchanger water temperature = 40/45 °C
- Air temperature entering the external exchanger = 7 °C D.B. / 6 °C W.B.
- Evaporator fouling factor= = 0.44 x 10^(-4) m² K/W
- 9) Data calculated in accordance with EN 14511:2013 referring to the following conditions:
- Internal heat exchanger water temperature = 40/45 °C
- Air temperature entering the external exchanger = 7 °C D.B. / 6 °C W.B.

Belaria® fit WLH (113-220)

Construction features

Size		(113)	(140)	(180)	(220)
Compressor					
Type of compressors		Rotary Inverter	Rotary inverter/ Scroll Inverter	Scroll Inverter	Scroll Inverter
Refrigerant		R-32	R-32	R-32	R-32
 Number of compressors 	Nr	4	4	4	4
Rated power C1	HP	25	25	35	45
Rated power C2	HP	25	35	35	45
 Capacity control steps Std 			Step	less	
Oil charge C1	1	4.6	4.6	6.2	7.2
Oil charge C2	1	4.6	6.2	6.2	7.2
Refrigerant charge C1	Kg	14.5	14.5	21	25.0
Refrigerant charge C2	Kg.	14.5	16.5	21	25.0
Refrigerant circuits	Nr	2	2	2	2
Internal exchanger					
Type of internal exchanger 1)			PH	I E	
 Number of internal exchangers 	Nr	1	1	1	1
Water content	1	10.5	13.2	15.4	15.4
Minimum system water content	I	1050	1250	1450	1930
External exchanger					
Type of external exchanger ²⁾			CC	HY	
Number of coils	Nr	2	2	2	2
External Section Fans					
Type of fans 3)			Α	X	
Number of fans	Nr	2	2	2	3
Type of motor			Brushle	ess DC	
Standard air flow SC	l/s	16667	16667	25000	25000
Standard air flow LN	l/s	15556	15556	23333	23333
Standard air flow EN	l/s	14444	14444	21667	21667
Connections					
Water fittings		2"1½	2"1½	3"	3"
Power supply • Standard power supply			400/	2/50	
			400/	J/JU	
Electricaldata		=	44	4=0	004 =
• F.L.A Total	Α	117	147.5	178	221.5
• F.L.I Total	kW	74.3	76.4	79.9	110
• M.I.C Value 4)	Α	117	147.5	178	221.5

¹⁾ PHE= Plate heat exchanger

Voltage imbalance between phases: max 2 %

Voltage variation: max +/- 10 %

The electrical data refer to the standard unit; depending on the accessories installed, the data may vary

 $^{^{\}rm 2)}$ CCHY = Copper/aluminium condensing coil with hydrophilic treatment

³⁾ AX = Axial fan

⁴⁾ M.I.C. = Maximum starting current of the unit. The M.I.C. is obtained by adding the maximum starting current of the largest compressor and the currents absorbed at the maximum permissible conditions (F.L.A.) of the remaining electrical components

Energy efficiency

SCOP up to 4.15 with low temperature water (LWT 35 °C).

SEER up to 4.40, making it extremely competitive even compared to cooling-only versions.

Capacity modulation from 20% to 100%.

Extended operating limits

Outdoor air temperature	max	min
Heating	44 °C	-20 °C
Domestic hot water production	44 °C	-20 °C
Cooling	48 °C	-15 °C
Outdoor air temperature	max	min
Outdoor air temperature Heating	max 60 °C	min 25°C
•		
Heating	60 °C	25 °C

Options supplied with the unit

Serial communication module for Modbus TCP/IP, BACnet/IP, BACnet MS/TP supervisor.

Enables serial connection to supervision systems using Modbus TCP/IP, BACnet/IP, BACnet MS/TP as communication protocols. Allows access to the complete list of operating variables, commands and alarms. With this accessory, each unit can communicate with the main supervision systems. The device is installed and wired on board the machine.

Warnings

The configuration and management of the BACnet network are the responsibility of the customer.

The total length of each individual serial line must not exceed 1000 metres and the line must be connected in bus mode (input/output).

High static pressure inverter pump (Installed on all types with CP in the name)

Pumping group consisting of an electric pump, controlled by inverter to adapt to different conditions. The pump flow rate and head can be adapted to the system features by calibrating. The pump flowrate and head can be adapted by inverter. Three-phase electric motor with IP55 protection rating. Quick-release couplings with an insulated casing, safety valve, pressure gauges, system load safety pressure switch, stainless steel immersion antifreeze heaters fitted on the suction and supply lines.

Anti-hail protection grilles

The grilles protect the external coil from accidental contact with objects or persons and hail.

Drain par

Drain pan with electric heater The drain pan made of steel AISI 316 allows the collection and discharge of the condensate.

Refrigerant leak detector

The leak detector device, in-built on the unit and positioned inside the compressor compartment.

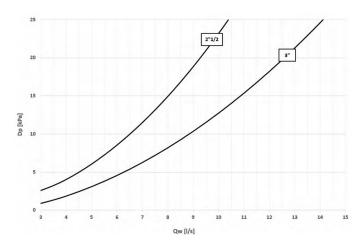
Additional board

Additional board for advanced functions management. Multifunction board installed in the electrical panel of the unit for the advanced functions management.

Sound levels

Acoustic configuration Super-silent

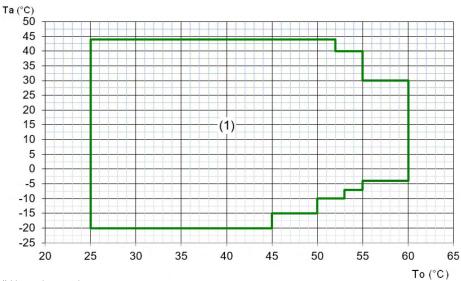
Size				Octav	ower level e band Hz				Sound pressure level	Sound power level
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
(113)	57	63	67	70	75	68	62	62	59	77
(140)	58	64	68	71	76	69	63	63	60	78
(180)	76	72	71	74	77	74	68	65	62	80
(220)	77	73	72	75	78	75	69	66	63	81


Sound levels refer to units at full load, under nominal test conditions. The sound pressure level is measured at a distance of 1 m from the external surface of the standard unit operating in an open field. Measurements are taken in accordance with UNI EN ISO 9614-2, in compliance with the requirements of EUROVENT 8/1 certification, which allows for a tolerance of 3 dB(A). Data refer to the following conditions:

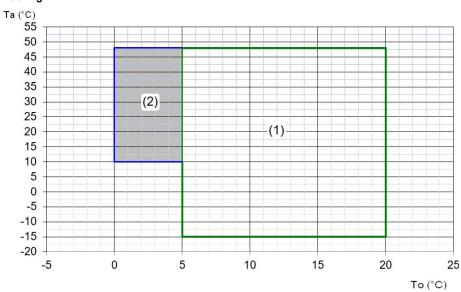
- Internal heat exchanger water temperature = 12/7 °C
- Air temperature entering the external exchanger = 35°C.

Steel mesh filter on the water side

The device prevents the heat exchanger from becoming dirty due to any impurities present in the hydraulic circuit. The mechanical filter stainless steel mesh filter must be positioned on the water inlet line. It can be easily removed for periodic maintenance and cleaning. The filter water connections are Victaulic 2" 1/2 for sizes 113 and 140 and 3" for sizes 180 and 220.


Filter pressure drop

Q = Water flow rate [I/s]


Dp = Water side pressure drop [kPa]

Fields of application Heating

1) Normal operating range

Fields of application Cooling

¹⁾ Normal operating range ²⁾ Operating range where the use of glycol is mandatory, depending on the water outlet temperature from the heat exchanger on the use side

Correction factors for ethylene glycol use

% Ethylene glycol by weight		5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
Freezing temperature	°C	-2	-3.9	-6.5	-8.9	-11.8	-15.6	-19	-23.4	-27.8	-32.7
Safety temperature	°C	3	1	-1	-4	-6	-10	-14	-19	-23.8	-29.4
Cooling capacity factor	Nr	0.997	0.994	0.99	0.986	0.981	0.976	0.97	0.964	0.957	0.95
Compressor power input factor	Nr	0.999	0.999	0.998	0.997	0.996	0.996	0.995	0.994	0.993	0.993
Internal exchanger pressure drop factor	Nr	1.016	1.035	1.056	1.08	1.106	1.135	1.166	1.2	1.236	1.275

Correction factors for propylene glycol use

% Propylene glycol by weight		5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
Freezing temperature	°C	-2	-3.9	-6.5	-8.9	-11.8	-15.6	-19	-23.4	-27.8	-32.7
Safety temperature	°C	3	1	-1	-4	-6	-10	-14	-19	-23.8	-29.4
Cooling capacity factor	Nr	0.995	0.99	0.983	0.976	0.968	0.96	0.95	0.939	0.928	0.916
Compressor power input factor	Nr	0.999	0.997	0.995	0.993	0.991	0.988	0.986	0.983	0.98	0.977
Internal exchanger pressure drop factor	Nr	1.027	1.058	1.093	1.133	1.176	1.224	1.276	1.332	1.393	1.457

Scale correction factors

Exchanger operating limits

	Internal heat exch	anger (evaporator)			Internal hea	t exchanger
M2 °C/W	F1	FK1	_	_	DPR	DPW
0.44 x 10 (-4)	1.0	1.0	Plate heat exchanger	PED (CE)	4500	1000
0.88 x 10 (-4)	0.97	0.99	DPr = Max. operating pr	ressure on the	refrigerant side	in kPa
1.76 x 10 (-4)	0.94	0.98	DPw = Max. operating p		•	

F1 = Cooling capacity correction factor FK1 = Compressor power correction factor

Overload and control device calibrations

Refrigerant side		Open	Close	Value
High pressure safety pressure switch	kPa	4200	3200	-
Low pressure safety pressure switch	kPa	140	300	-
Gas-liquid separator safety valve	kPa	-	-	3000
Safety thermostat against compressor drain overheating	°C	75	115	-
Water side				
Antifreeze protection	°C	8	4	-
High pressure safety valve	kPa	-	-	1000

Belaria® fit WLH (113-220)

Acoustic configuration Compressor soundproofing - Super-silent

Size		Leaving internal exchanger water temperature (°C)											
D.B./W.B.	Та		35		40		45		50		55		60
U.U./44.U.	°C	kW	KWe_tot	kW	KWe_tot	kW	KWe_tot	kW	KWe_tot	kW	KWe_tot	kW	KWe_tot
	-20 / -21	60.1	28	57.1	29.3	56.7	32	-	-	-	-	-	-
	-15 / -16	67.6	29.7	65.2	31.4	65.6	34.6	63.5	36.7	-	-	-	-
	-7 / -8	89.3	32.8	85.1	38	82.8	38.4	81.1	40.9	75.7	42.1	-	-
(113)	-4 / -5	95	36.5	93	39.2	90.9	39.6	89.2	42.2	82.2	45.6	73.3	48.5
(113)	2/1	113	37.8	111	40.8	108	41.5	106	44.5	89.1	48.5	87.4	51.4
	7 / 6	135	37.1	130	39.8	130	42.8	123	46.1	103	50.4	101	53.7
	12 / 11	151	37.3	149	40.7	143	44	141	47.5	118	52	115	55.5
	18 / 14	171	37.3	168	40.9	162	44.4	158	48.1	132	52.8	129	56.5
	-20 / -21	77	38.8	77.4	42.8	81.6	49.2	-	-	-	-	-	-
	-15 / -16	89.3	40.3	89.7	44.3	94.2	50.6	81.3	55.1	-	-	-	-
	-7 / -8	111	40.6	111	45	116	52.2	99.7	56.7	99.7	58.9	-	-
(4.40)	-4 / -5	121	41.4	120	45.6	126	52.8	108	57.3	108	61.3	108	68.1
(140)	2/1	140	42.3	140	46.4	146	53.7	125	58.4	124	64.5	124	69.5
	7/6	163	43.5	159	48.4	170	54.6	141	59.4	140	65.6	139	70.7
	12 / 11	193	46.1	192	50.7	187	55.2	159	60.2	157	66.5	156	71.8
	18 / 14	217	46	215	50.7	209	55.3	177	60.4	175	66.7	173	72.1
	-20 / -21	81.7	53.3	86.1	60.1	90.8	68	-	-	-	-	-	-
	-15 / -16	102	54	106	60.4	109	67.9	79.2	68.8	-	-	-	-
	-7 / -8	139	50.5	137	61.2	139	67.5	105	66.7	106	64.7	-	-
(490)	-4 / -5	151	55.5	153	61.3	154	67.2	129	66.2	130	70.7	130	78.2
(180)	2/1	181	55.8	182	61.2	182	66.9	149	65.8	149	71.5	149	77.4
	7 / 6	192	51.8	212	62.8	210	67	167	65.9	166	71.6	166	77.4
	12 / 11	240	57.9	238	63.3	239	70.3	187	66.2	186	71.8	184	77.6
	18 / 14	268	57.9	266	63.2	266	70.1	207	66	205	71.5	203	77.2
	-20 / -21	126	64	132	71.4	137	77.8	-	-	-	-	-	-
	-15 / -16	145	66.3	149	72.2	153	78.5	119	76.5	-	-	-	-
	-7 / -8	168	70.6	170	73.3	172	79.3	146	77.2	147	83.9	-	-
(220)	-4 / -5	190	68.2	191	73.9	193	79.8	176	77.6	178	83.4	179	89.5
(220)	2/1	220	69.2	220	74.8	220	80.7	200	78.4	200	84.2	200	90.2
	7/6	240	65.2	284	77.3	268	87.5	224	79.2	223	85	222	91
	12 / 11	324	72.3	321	78.1	321	85.9	251	80.1	249	86	247	92.1
	18 / 14	364	72.5	360	78.5	360	86.4	280	80.7	277	86.7	275	92.9

kW = Heat capacity in kW kWe tot = Total power input in kW

Ta (°C) = Temperature of air entering the external exchanger

D.B. = Dry bulb W.B. = Wet bulb

Integrated heating capacities

External exchanger inlet air temperature °C (D.B/W.B.)	-7 / -8	-5 / -6	0 / -1	2/1	Other
Heating capacity multiplication coefficient	0.90	0.89	0.88	0.90	1.00

The integrated heat output represents the effective heat output, including the effect of any defrost cycles.

It is obtained by multiplying the thermal potential value provided in kWt (shown in the heating performance tables) by the coefficients indicated in the table. During prolonged operation in heat pump mode with negative outside air temperatures, it is important to facilitate the evacuation of water produced by the defrost cycles to prevent ice accumulation near the base of the unit. Make sure that this does not pose a danger to people or property.

Performance data - Partial load heating

Belaria® fit WLH (113-220)

Acoustic configuration Compressor soundproofing - Super-silent

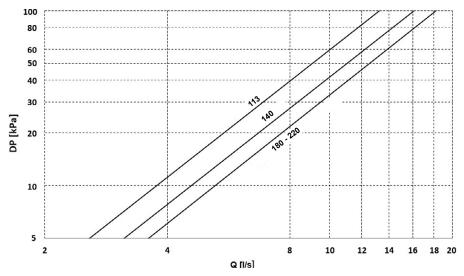
Size							Ente	ring ex	ternal	excha	nger ai	ir temp	erature	(°C)					
	Load		-20 / -2 ⁻	1		15 / -16			-10 / -1	l		-7 / -8			2/1			7/6	
		kW	KWe_ tot	COP	kW	KWe_ tot	COP	kW	KWe_ tot	СОР	kW	KWe_ tot	СОР	kW	KWe_ tot	COP	kW	KWe_ tot	СОР
	100	56.7	32	1.77	65.6	34.6	1.9	75.7	37	2.05	82.8	38.4	2.16	108	41.5	2.61	130	42.8	3.03
(113)	75	37.1	21.7	1.71	45.5	23.3	1.96	54.5	24.7	2.21	60.4	25.6	2.36	80.8	28	2.88	93.9	28.9	3.24
(113)	50	21.3	14.9	1.43	27.7	16	1.73	34.3	17.1	2.01	38.3	17.6	2.17	52.4	19.2	2.72	56	17.7	3.17
	Min.	7.29	5.19	1.41	9.65	5.57	1.73	12	5.91	2.04	13.5	6.09	2.21	18.3	6.57	2.79	21.2	6.76	3.13
	100	81.6	49.2	1.66	94.2	50.6	1.86	107	51.5	2.08	116	52.2	2.22	146	53.7	2.72	170	54.6	3.11
(140)	75	55.7	34.2	1.63	66.5	34.8	1.91	77.6	35.5	2.19	84.9	35.9	2.36	109	37.2	2.93	124	37.8	3.29
(140)	50	34.9	24.4	1.43	42.2	24.5	1.73	49.8	24.7	2.02	54.6	24.8	2.2	70.7	25.7	2.75	74.3	23.3	3.18
	Min.	12.5	8.02	1.56	14.9	8.06	1.85	17.4	8.15	2.14	19.1	8.23	2.32	24.5	8.53	2.88	28	8.72	3.21
	100	90.8	68	1.34	109	67.9	1.61	128	68.2	1.87	139	67.5	2.06	182	66.9	2.72	210	67	3.13
(400)	75	64.5	40.9	1.58	77.5	40	1.94	90.2	39.3	2.29	98.4	39.3	2.51	130	39.7	3.27	150	43.4	3.45
(180)	50	43.5	27.5	1.58	51.2	26.3	1.94	58.8	25.5	2.3	63.9	25.2	2.53	83.5	25.1	3.33	96	21.2	4.53
	Min.	18.5	12.4	1.49	21.4	11.9	1.81	24.4	11.5	2.12	26.2	11.4	2.31	33.8	11.2	3.01	38.7	9.43	4.1
	100	137	77.8	1.76	153	78.5	1.95	167	79.2	2.11	172	79.3	2.16	220	80.7	2.72	268	87.5	3.06
(220)	75	98.8	47	2.1	111	48.1	2.31	125	48.5	2.57	134	48.9	2.74	173	49.2	3.52	200	53.8	3.71
(220)	50	59.1	31.5	1.87	68.5	32	2.14	78.5	32.5	2.41	85.1	32.8	2.59	112	33.7	3.31	129	28.6	4.5
	Min.	22.9	13.7	1.67	26.9	13.9	1.94	31	14	2.22	33.8	14	2.41	44.5	14.2	3.14	51.3	11.9	4.3

Load = Percentage of heat output relative to full load value

kW = Heat output in kW kWe_tot = Total power input in kW

Internal heat exchanger water temperature=, outlet 45°C / inlet 40°C / Variable flow rate with external heat exchanger air temperature.

Performance data - Cooling


Belaria® fit WLH (113-220)

Acoustic configuration Super-silent

Size		Inlet air temperature at external heat exchanger (°C)											
	То	;	25		30		35		40		45		48
	°C	kWf	kWe_tot	kWf	kWe_tot	kWf	kWe_tot	kWf	kWe_tot	kWf	kWe_tot	kWf	kWe_tot
	5	127	34	114	37	110	47.1	107	49.9	95	53.7	82.4	54.5
	6	134	34.3	118	37.5	114	48.6	114	50.5	98.7	54.4	85.6	55.1
	7	137	34.9	124	38.1	120	47.5	115	51.4	104	55.3	90.5	56.1
(113)	10	140	32.9	133	36	130	44	121	48.7	112	52.5	96.6	53.3
	15	135	30.3	134	33.1	133	39.5	120	45	112	48.6	96.8	49.3
	18	132	28.5	135	31.3	135	36.5	119	42.5	113	45.9	96.9	46.6
	20	133	24.9	126	28.0	123	32.1	111	33.2	96.5	38.3	95.5	40.1
	5	118	36.6	118	41.7	118	49.5	111	52.1	105	56.7	85.5	59.9
	6	123	36.9	124	42.1	127	56.2	116	52.6	109	57.2	88.7	60.3
	7	127	37.2	129	42.5	136	62.9	120	53	113	57.6	91.9	60.8
(140)	10	133	37.7	133	43	137	58.6	126	53.7	119	58.4	97.4	61.6
	15	146	35.6	147	40.6	151	53.1	143	51.3	135	55.8	108	58.3
	18	151	33	153	37.7	157	46.7	152	48.1	144	52.4	113	54.1
	20	154	40.3	167	46	172	62.5	169	57.1	160	61.9	131	65.3
	5	160	53.3	154	58.3	147	63.8	140	69.7	133	76.2	129	80.3
	6	166	53.7	159	58.7	152	67.5	145	70.2	138	76.6	133	80.7
	7	172	54.1	165	59.1	157	71.2	150	70.6	143	77	138	81.1
(180)	10	180	54.7	173	59.7	165	65.2	158	71.2	150	77.6	146	81.7
	15	202	53.4	194	58.2	178	59.9	179	69.1	171	75.2	167	79.1
	18	213	51.6	206	56	182	53.9	191	66.3	183	72.1	178	75.8
	20	221	50.3	214	54.6	184	49.9	198	64.4	190	70	186	73.6
	5	211	71.7	202	77.3	189	87.5	185	89.9	177	96.8	171	101
	6	218	72.3	209	77.9	199	90.4	192	90.6	183	97.6	177	102
	7	225	72.9	216	78.6	208	93.4	199	91.4	189	98.4	184	103
(220)	10	239	74.1	230	79.8	214	90.3	210	92.6	199	100	193	104
	15	248	65.8	239	71.2	227	79.9	220	83.2	211	89.9	205	94.1
	18	248	56.8	240	61.6	231	68.4	222	72.7	212	78.9	207	82.8
	20	248	50.7	240	55.3	234	60.8	223	65.7	214	71.6	208	75.3

kW = Cooling output in kW
kWe_tot = Total power input in kW
To (°C) = Internal exchanger outlet water temperature
Performances in fuction of the inlet/outlet water temperature differential = 5°C

Plate exchangers pressure drop (EVPHE)

Pressure drops are calculated considering a water temperature of 7°C

Q = Water flow rate [I/s]

DP = Water side pressure drop [kPa]

The water flow rate can be calculated using the following formula

$Q[I/s] = kW / (4,186 \times DT)$

kW = Cooling capacity in kW

DT = Temperature difference between inlet / outlet water

Permissible water flow rates

Minimum (Qmin) and maximum (Qmax) water flow rates allowed for the unit to work properly.

Size		(113)	(140)	(180)	(220)
Qmin	[l/s]	2.6	3.1	3.6	3.6
Qmax	[]/s]	13.3	16.2	18.3	18.3

Performance data - Partial load cooling

Belaria® fit WLH (113-220)

Acoustic configuration Super-silent

Size		Entering external exchanger air temperature (°C)											
	Load		35 °C			30 °C			25 °C			20 °C	
		kWf	kWe_tot	EER	kWf	kWe_tot	EER	kWf	kWe_tot	EER	kWf	kWe_tot	EER
	100	114	48.6	2.35	118	37.5	3.15	134	34.3	3.89	134	31.3	4.28
(442)	75	84	29.9	2.81	84.4	24.2	3.49	85.7	22.2	3.87	88	19.6	4.49
(113)	50	57.5	16.4	3.51	56.3	13.9	4.07	56.2	12	4.68	56.5	10.2	5.56
	Min.	20.4	6.47	3.15	21.7	6.19	3.5	23.3	5.42	4.29	23.4	4.62	5.07
	100	136	62.9	2.16	129	42.5	3.04	127	37.2	3.41	126	31.7	3.98
(140)	75	98.8	32.2	3.07	95.1	27.2	3.49	94.8	23.9	3.97	94.3	20.4	4.62
	50	66.5	19.4	3.43	64.4	16.2	3.99	64.7	13.9	4.66	64.9	11.7	5.52
	Min.	22.8	7.29	3.12	25.7	6.96	3.69	25.8	6.1	4.23	26	5.26	4.94
	100	157	71.2	2.21	165	59.1	2.79	172	54.1	3.18	178	49.5	3.6
(180)	75	121	41.3	2.93	127	37.6	3.37	132	34.3	3.85	137	31.5	4.35
	50	77.8	24.4	3.19	81.9	21.8	3.76	85.9	19.6	4.39	90	17.8	5.05
	Min.	27	8.08	3.34	28.6	7.26	3.95	30.3	6.62	4.58	31.9	6.14	5.2
	100	208	93.4	2.23	216	78.6	2.75	225	72.9	3.08	233	67.7	3.44
(220)	75	152	53.5	2.83	161	47.5	3.39	167	43.6	3.83	173	40.2	4.3
(220)	50	95.1	29.5	3.22	99.4	26.3	3.78	104	23.5	4.41	108	21.1	5.1
	Min.	33.8	9.61	3.52	35.5	8.52	4.16	37.1	7.62	4.87	38.7	6.88	5.63

Load = Percentage of cooling capacity relative to full load value

kW = Cooling capacity in kW kWe_tot = Total power input in kW

Internal heat exchanger water temperature = outlet 7°C / inlet 12°C / variable flow-rate with external exchanger air T.

Configurations

Permissible water flow rates

Minimum (Qmin) and maximum (Qmax) water flow rates allowed for correct operation of the unit.

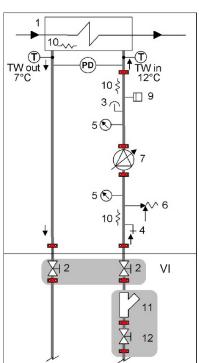
Size		(113)	(140	(180)	(220)
Qmin	[l/s]	2.5	3	3.4	4.4
Qmax	[]/s]	11.2	13.7	16.2	20.7

Hydronic unit accessories

Pump unit on the user side with 1 high-head inverter pump

Pump unit consisting of an electric pump regulated by an inverter to adapt to different operating conditions.

Allows automatic reduction of the liquid flow rate in critical conditions, preventing blockages due to overload and consequent intervention by specialised technical personnel.


By adjusting the inverter, supplied as standard, the pump flow rates/heads can be adapted to the system characteristics. Centrifugal electric pump with cast iron pump body and stainless steel or cast iron impeller (depending on model).

Mechanical seal made of ceramic, carbon and EPDM elastomer components.

Three-phase electric motor with IP55 protection rating. Complete with thermoformed insulating shell, quick couplings with insulating shell, safety valve, pressure gauges, system load safety pressure switch, stainless steel immersion-type anti-freeze heating elements located in the suction and delivery lines.

All water connections are Victaulic. Option supplied on board the unit..

CONNECTION DIAGRAM - Unit with 1 high-head inverter pump

- 1 Internal heat exchanger
- 2 Shut-off valve
- 3 Vent valve
- 4 Drain valve
- 5 Pressure gauge
- 6 Safety valve (6 Bar)
- 7 Monobloc electric pump with high-efficiency impeller
- 9 System load safety pressure switch (prevents the pumps from operating in the event of water failure)
- 10 Anti-freeze heating element
- 11 Steel mesh filter on the water side
- 12 Shut-off valve with quick couplings
- T Temperature probe PD Differential pressure switch

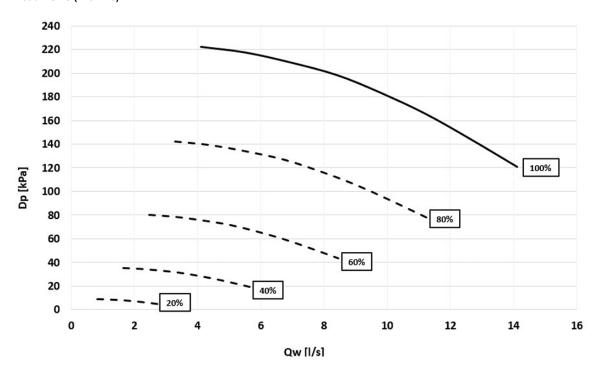
TW in Chilled water inlet

TW out Chilled water outlet

The grey area indicates additional optional components.

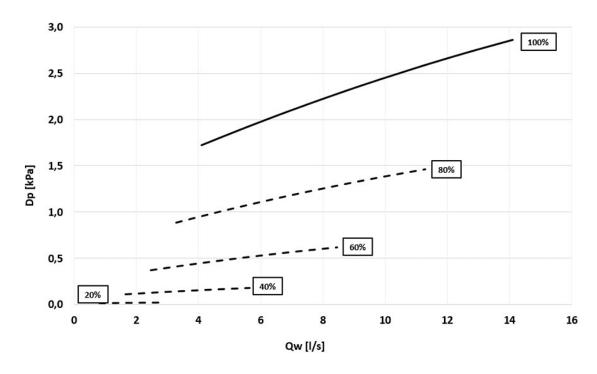
Warnings

Provide hydraulic shut-off valves outside the unit to facilitate any extraordinary maintenance operations.


A non-return valve must be provided for each unit installed in parallel hydraulically and equipped with a pump unit installed on board (installation by the customer).

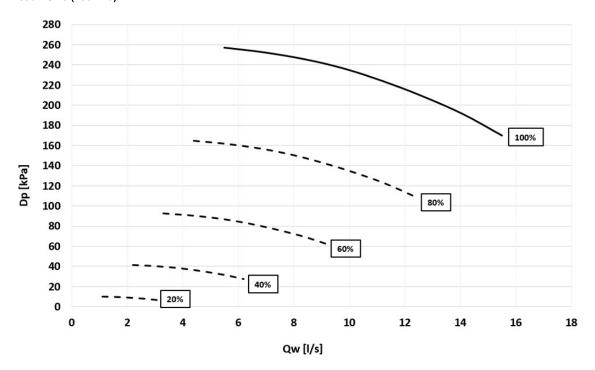
Electrical data Pump group

Pump	Nominal power [kW]	Rated absorbed current [A]
1PMVH (113-140)	3.0	6.33
1PMVH (180-220)	4.0	7.62

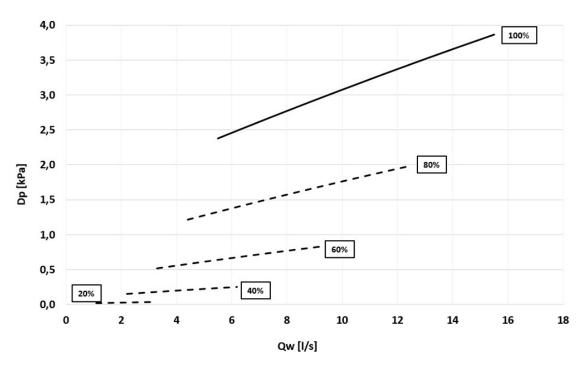

Pump group on the user side with 1 high-head inverter pump

Head - Size (113-140)

Dp = Pump head [kPa] QW = Water flow rate [l/s]

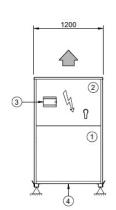

Power input - Size (113-140)

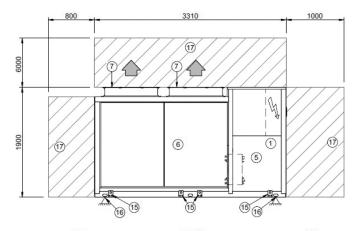
Pe = Power consumption [kW] QW = Water flow rate [l/s]

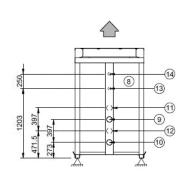

Pump group on the user side with 1 high-head inverter pump

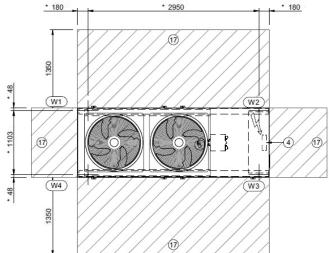
Head - Size (180-220)

Dp = Pump head [kPa] QW = Water flow rate [l/s]

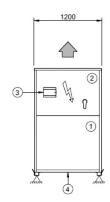

Power input - Size (180-220)

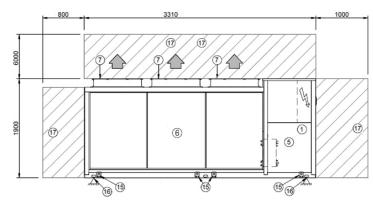


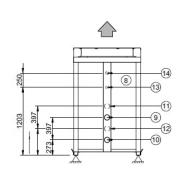

Pe = Power consumption [kW] QW = Water flow rate [l/s]

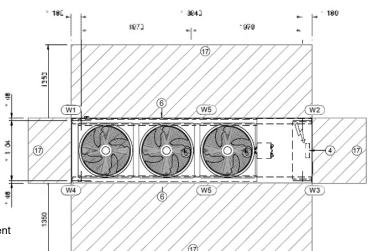

Dimensions

Size (113-140)




- Compressor compartment
- Electrical panel 2.
- Human Machine Interface
- Power input
- Internal exchanger 5.
- External exchanger 6.
- 7.
- 8. Rear compartment
- Victaulic 2" 1/2 water inlet connection
- Victaulic 2" 1/2 water outlet connection
- Victaulic 2" 1/2 DHW water inlet connection
- Victaulic 2" 1/2 DHW water outlet connection
- Victaulic 1" 1/4 gas partial inlet recovery water connection
- Victaulic 1" 1/4 gas partial outlet recovery water connection
- Lifting bracket (removed) 15.
- 16. Support points
- Functional clearances
 - Position of antivibration mounts


Size		(113)	(140)
Length	mm	3310	3310
Depth	mm	1200	1200
Height	mm	1900	1900
W1 Support point	kg	171	168
W2 Support point	kg	312	323
W3 Support point	kg	312	341
W4 Support point	kg	171	177
Operating weight	kg	966	1009
Shipping weight	kg	952	994


Dimensions

Size (180-220)

- 1. Compressor compartment
- 2. Electrical panel
- 3. Human Machine Interface
- 4. Power input
- 5. Internal exchanger
- 6. External exchanger
- **7.** Fan
- 8. Rear compartment
- 9. Victaulic 2" 1/2 water inlet connection
- **10.** Victaulic 2" ½ water outlet connection
- 11. Victaulic 2" ½ DHW water inlet connection
- 12. Victaulic 2" ½ DHW water outlet connection
- 13. Victaulic 1" 1/4 gas partial inlet recovery water connection
- 14. Victaulic 1" 1/4 gas partial outlet recovery water connection
- 15. Lifting bracket (removed)
- 16. Support points
- 17. Functional clearances
 - * Position of antivibration mounts

Size		(180)	(220)
Length	mm	4300	4300
Depth	mm	1200	1200
Height	mm	1900	1900
W1 Support point	kg	210	234
W2 Support point	kg	415	442
W3 Support point	kg	415	442
W4 Support point	kg	210	234
Operating weight	kg	1250	1352
Shipping weight	kg	1231	1334

Hoval Belaria[®] pro Modulating monoblock heat pump for heating and cooling.

Monoblock heat pump set up outdoors consisting of outdoor unit and indoor unit.

Belaria® pro outdoor unit

- Compact floor-mounted air/water heat pump
- · Elegant and extremely quiet outdoor unit
- Casing with sheet metal cladding, powdercoated, colour anthracite (DB703)
- · Cooling unit with refrigerant R290
- · Integrated components:
 - Speed-controlled scroll compressor
 - Straight louvre-type evaporator
 - Speed-controlled axial fan with FlowGrid (inlet grille)
 - Plate-type condenser made of stainless steel/copper
 - Built-in gas separator with safety valve 2.5 bar
 - Condensate drip tray incl. tray heating and condensate trace heater for channelling all the condensate in the outdoor unit, fixed installation, 1" connection
- With cooling function with corresponding hydraulics
- · Hydraulic connections behind louvre grille
 - Heating connections 11/2"
 - Filter ball valve installed in the heat pump return
- · Electrical connections behind louvre grille
 - 400 V main power supply
 - 230 V control current, supplied from the indoor unit
 - Data cable for bus connection to the indoor
- With fitting accessories for fixing the outdoor unit on the ground

Belaria® pro indoor unit

- · Compact wall-mounted indoor unit
- Casing made of structured EPP, colour black
- TopTronic® E control installed with TopTronic® E control module
- With WFA-200S automatic heat pump device
- · Integrated components:
- Speed-controlled high-efficiency pump
- Flow sensor/heat meter
- Hydraulic connections at bottom
 - Heating connections 11/4" reductions 11/2" 11/4" supplied
- Electrical connections introduced from bottom
- With fitting accessories for fixing the indoor unit to the wall
- Shut-off ball valves are included in the scope of delivery.

TopTronic® E controller

Control panel

- 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp
- Mains isolator

Model range Belaria® pro			Heat o	utput 1)	Cooling capacity 1)
type	35 °C	55 °C	A-7W35 kW	A2W35 kW	A35W18 kW
(24)	A*** → D	A *** → D	11.9-22.1	11.8-24.0	13.0-20.9

Energy efficiency class of the compound system with control.

1) Modulation range

TopTronic® E control module

- Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- · Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTF-WF7

- · Integrated control functions for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max. 1 module expansion:
 - Module expansion heating circuit or
- Module expansion Universal or
- Module expansion heat balancing
- Can be networked with up to 16 controller modules in total:
 - Heating circuit/DHW module
 - Solar module
 - Buffer module
 - Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls"

EnergyManager PV smart

Feature to increase self-generated power consumption in use with HovalConnect.

If a HovalConnect gateway is used together with the heat pump, the EnergyManager PV smart feature is available. This allows the heat pump to be operated preferentially at times of higher solar radiation. The feature uses online weather data on the current solar radiation for this purpose and can be adjusted by means of an associated threshold value. The self-consumption of electricity from an existing photovoltaic plant is thus increased and the purchase of grid electricity is reduced. This results in a lasting and significant cost-saving potential without further investment costs for the customer.

Delivery

- Outdoor and indoor unit delivered packaged separately
- Sensor kit included loose in the electrical box:
- Outdoor sensor (AF)
- Calorifier sensor (SF1/SF1.1)
- Flow sensor (VF1)

On site

- · Wall ducts for hydraulic connection lines
- Hydraulic connection lines from the outdoor unit to the inside of the building as far as the indoor unit
- Electrical connection line from the outdoor unit to the indoor unit
- Strip foundation, floor plate

Belaria[®] pro (24)

Belana pro (24)		
Туре		pro (24)
 Energy efficiency class of the compound system with control ¹⁾ (A+++ → D) Room heating energy efficiency "moderate climate" 35 °C ηS 	35 °C/55 °C %	A+++/A+++ 225
• Room heating energy efficiency "moderate climate" 55 °C ηS	%	165
		5.7/4.2
• Seasonal coefficient of performance moderate climate 35 °C/55 °C	SCOP SEER	5.6
• Seasonal coefficient of performance heating A35W18 ²⁾	SEER	3.2
Seasonal coefficient of performance heating A35W7 ²⁾		3.2
Max./min. performance data heating and cooling in acc. with EN 14511		24.0
Max. heat output A2W35 Max. heat output A 7W35	kW	24.0
Max. heat output A-7W35 Min. heat output A-FN05	kW	22.1
Min. heat output A15W35 May cooling consoits A35W49	kW	12.6
Max. cooling capacity A35W18 Max. cooling capacity A35W7	kW	20.9
Max. cooling capacity A35W7Min. cooling capacity A35W18	kW kW	19.1 13.0
	NVV	13.0
Nominal output data heating in acc. with EN 14511	LAM	44.5
Nominal heat output A2W35Coefficient of performance A2W35	kW COP	14.5 4.9
Nominal heat output A7W35	kW	16.7
Coefficient of performance A7W35	COP	5.7
Nominal heat output A-7W35	kW	14.8
Coefficient of performance A-7W35	COP	3.6
Nominal output data cooling in acc. with EN 14511		6.6
Nominal cooling capacity A35W18	kW	18.6
• Energy efficiency ratio A35W18	EER	4.5
Nominal cooling capacity A35W7	kW	13.8
Energy efficiency ratio A35W7	EER	3.4
Sound data		
Max. sound power level outdoor unit, day operation	dB(A)	62
Max. sound power level outdoor unit, night operation	dB(A)	52
• Sound power level EN 12102 outdoor unit 3)	dB(A)	56
• Sound pressure level 5 m ^{3), 4)}	dB(A)	37
• Sound pressure level 10 m ^{3), 4)}	dB(A)	31
Hydraulic data	,	
Max. flow temperature	°C	70
• Max. flow rate heating side with A7W35, ΔT 6 K	m ³ /h	3.9
 Nominal flow rate heating side with A7W35, ΔT 5 K 	m ³ /h	2.9
 Max. flow rate heating side with A7 w35, Δ1 5 K 		5.5
3	m ³ /h	
Pressure drop heating side at nominal flow Presidual events acres of heating pump at period flow	kPa	10
Residual overpressure of heating pump at nominal flow	kPa	60
Residual overpressure of heating pump at max. flow rate	kPa	35
• Max. operating pressure on the heating side ⁵⁾	bar	2.5
Flow/return connection heating	G	1½"
Nominal air volume outdoor unit (A7W35 and nominal rotation speed)	m³/h	6600
Max. air volume outdoor unit (A7W35 and max. speed of rotation)	m ³ /h	8000
Hydraulic connection line, max. length/dimension inside	m/DN	30/40

Туре		pro (24)
Cooling technical data		
• Compressor		modulating
• Refrigerant		R290
Refrigerant filling quantity	kg	4.4
Compressor oil type		PZ46M
Compressor oil filling quantity	L	0.9
Electrical data		
Electrical connection of compressor	V/Hz	3~400/50
Electrical connection of controller	V/Hz	1~230/50
Electrical connection of electric heating element	V/Hz	-
Max. heat pump operating current	Α	19.5
Max. compressor operating current	Α	19.2
Max. fan operating current	Α	0.3
Max. electric heating element operating current	Α	-
Max. output of electric heating element	kW	-
Max. power consumption of heat pump	kW	11.9
Max. fan power consumption	W	194
Max. starting current heat pump I _A	Α	19.2
Power factor		0.88
External protection main current	Α	C/K 20
External protection control current	Α	B/Z 13
External protection electric heating element	Α	-
Fault-current circuit breaker		RCCB type B, I∆n ≥ 300 mA
Recommended cable		Cu 5 x 4.0 mm ²
Nominal electrical output with A-7W35	kW	4.1
Maximum electrical output	kW	11.4
• Active power of heat pump	kW	10.5
Max. operating voltage Ub	V	3~400
Max. operating current lb	Α	19.5
Max. inverter output current	Α	24.0
Pulse count		3
Max. switching frequency per hour/day at tn 0 °C	n	3/72
• Continuous load changes		No
Starting up under load		No
Feedback into the power system		No
Power factor correction		No
Starting up assistance		Output control
Type of starting up assistance		Frequency converter
• Frequency converter		60-360 Hz (20-120 rps)
Starting current/nominal current ratio		0.99
Dimensions/weight of outdoor unit		
Dimensions (H x W x D)	mm	1461 x 1928 x 997
Weight	kg	450
Protection class	Ny	IP24
		2 .
Dimensions/weight of indoor unit Belaria [®] pro		4005 550 000
• Dimensions (H x W x D)	mm	1005 x 550 x 280
Weight	kg	28
Protection class		IP20

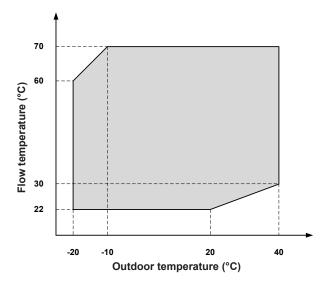
¹⁾ Related to moderate climate

An isolating system must be provided for system pressures of 2.5 bar or more.

Using a fault-current circuit breaker RCCB type B, I∆n ≥ 300 mA is recommended. Country-specific regulations must be observed.

²⁾ EN 14825

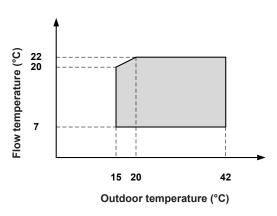
³⁾ The sound values apply with a clean evaporator. These values are temporarily exceeded before defrosting.


⁴⁾ The sound pressure levels indicated apply if the outdoor unit is placed at a building façade. These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

⁵⁾ Maximum operating pressure of the system without isolating system 2.5 bar, because the outdoor unit is protected with 2.5 bar. Provide general protection of the system in the building with 3.0 bar.

Diagrams of areas of application

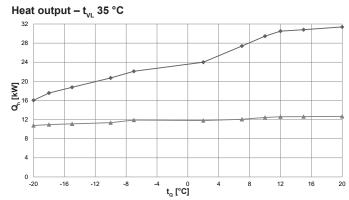
Heating and domestic hot water

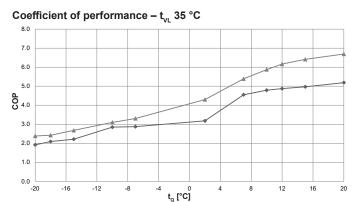

Belaria® pro (24)

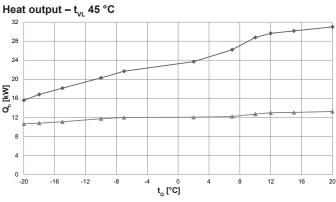
Area of application of the heat pump for heating/domestic hot water

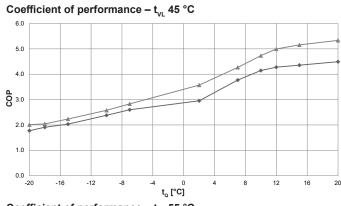
Cooling

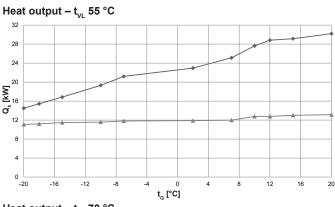
Belaria® pro (24)

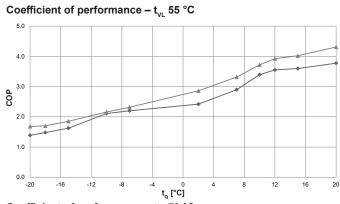


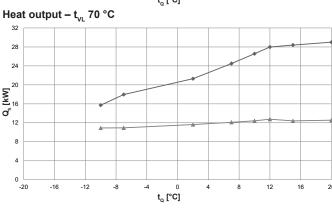

Area of application of the heat pump for cooling

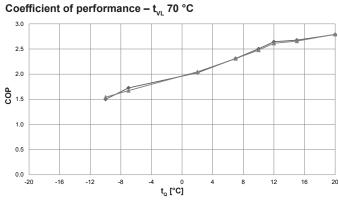

Maximum heat output allowing for defrosting losses


Belaria® pro (24)


Data according to EN 14511







= heating flow temperature (°C)

= source temperature (°C)

t_Q = heat output (kW), measured in accordance with standard

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Belaria® pro (24) Data according to EN 14511

		Ma	Maximum output		Minimum output		
t _{∨∟} °C	t _o °C	\mathbf{Q}_{h}	Р	COP	$\mathbf{Q}_{_{h}}$	Р	COP
°C	°C	kW	kW		kŴ	kW	
	-20	16.0	8.4	1.9	10.8	4.5	2.4
	-18	17.6	8.4	2.1	10.9	4.5	2.4
	− 15	18.8	8.5	2.2	11.1	4.1	2.7
	-10	20.7	7.3	2.9	11.4	3.7	3.1
	-7	22.1	7.7	2.9	11.9	3.6	3.3
35	2	24.0	7.5	3.2	11.8	2.7	4.3
	7	27.4	6.0	4.6	12.1	2.2	5.4
	10	29.5	6.2	4.8	12.4	2.1	5.9
	12	30.5	6.3	4.9	12.6	2.0	6.2
	15	30.8	6.2	5.0	12.6	2.0	6.4
	20	31.4	6.1	5.2	12.7	1.9	6.7
	-20	15.6	8.8	1.8	10.6	5.3	2.0
	-18	16.8	8.8	1.9	10.8	5.3	2.0
	-15	18.1	8.9	2.0	11.1	5.0	2.2
	-10	20.3	8.5	2.4	11.7	4.5	2.6
	-7	21.7	8.4	2.6	12.0	4.2	2.8
45	2	23.7	8.0	3.0	12.0	3.4	3.6
	7	26.2	7.0	3.8	12.2	2.9	4.3
	10	28.8	6.9	4.1	12.7	2.7	4.7
	12	29.6	6.9	4.3	13.0	2.6	5.0
	15	30.2	6.9	4.4	13.0	2.5	5.2
	20	31.0	6.9	4.5	13.2	2.5	5.3
	-20	15.0	9.7	1.5	11.5	5.8	2.0
	-18	16.1	9.6	1.7	11.6	5.8	2.0
	-15	17.5	9.7	1.8	10.9	5.4	2.0
	-10	19.8	8.8	2.2	11.2	5.0	2.3
	-7	21.7	9.1	2.4	11.5	4.6	2.5
50	2	23.3	8.8	2.7	11.7	3.7	3.1
	7	25.7	7.8	3.3	12.0	3.2	3.7
	10	28.2	7.5	3.7	12.3	3.0	4.1
	12	29.2	7.5	3.9	12.4	2.9	4.3
	15	29.6	7.5	3.9	12.5	2.8	4.4
	20	30.6	7.5	4.1	12.6	2.8	4.5
	-20	14.5	10.4	1.4	11.1	6.6	1.7
	-18	15.4	10.4	1.5	11.2	6.6	1.7
	-15	16.9	10.4	1.6	11.5	6.2	1.9
	-10	19.3	9.2	2.1	11.6	5.4	2.2
	-7	21.2	9.6	2.2	11.8	5.1	2.3
55	2	23.0	9.5	2.4	11.9	4.2	2.9
	7	25.1	8.7	2.9	12.0	3.6	3.3
	10	27.6	8.1	3.4	12.8	3.4	3.7
	12	28.8	8.1	3.6	12.8	3.3	3.9
	15	29.1	8.1	3.6	13.0	3.2	4.0
	20	30.2	8.0	3.8	13.1	3.0	4.3

= heating flow temperature (°C)

= source temperature (°C)
= source temperature (°C)
= heat output (kW), measured in accordance with standard EN 14511
= power consumption for the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

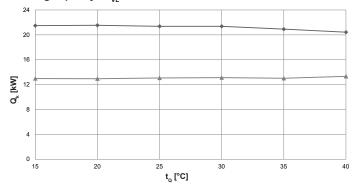
Further performance data - heating see next page

Observe daily power interruptions! see "Engineering heat pumps general"

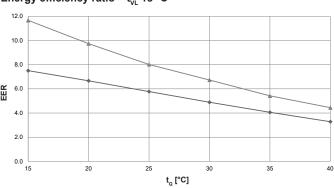
Belaria® pro (24) Data according to EN 14511

		Ma	Maximum output			Minimum output		
t _{vi}	t °C	$\mathbf{Q}_{_{\mathrm{h}}}$	Р	COP	$\mathbf{Q}_{_{\mathbf{h}}}$	Р	COP	
t _{v∟} °C	°Č	kW	kW		kŴ	kW		
	-20	14.0	11.4	1.2	10.8	7.1	1.5	
	-18	14.8	11.4	1.3	10.9	7.1	1.5	
	-15	16.2	11.1	1.5	11.2	6.7	1.7	
	-10	18.8	10.4	1.8	11.5	6.0	1.9	
	-7	20.7	10.2	2.0	11.6	5.6	2.1	
60	2	22.6	10.2	2.2	11.3	4.8	2.3	
	7	24.6	9.5	2.6	12.1	4.2	2.9	
	10	27.0	8.7	3.1	12.4	3.8	3.2	
	12	28.4	8.7	3.3	12.8	3.8	3.4	
	15	28.6	8.7	3.3	12.8	3.7	3.5	
	20	29.7	8.5	3.5	12.9	3.5	3.7	
	-20	-	-	-	-	-	-	
	-18	-	-	-	-	-	-	
	-15	-	-	-	-	-	-	
	-10	15.7	10.5	1.5	10.9	7.1	1.5	
	-7	18.0	10.4	1.7	10.9	6.5	1.7	
70	2	21.3	10.5	2.0	11.6	5.7	2.0	
	7	24.5	10.6	2.3	12.1	5.2	2.3	
	10	26.6	10.6	2.5	12.4	5.0	2.5	
	12	28.0	10.6	2.6	12.8	4.9	2.6	
	15	28.4	10.6	2.7	12.4	4.7	2.7	
	20	29.0	10.4	2.8	12.6	4.5	2.8	

Observe daily power interruptions! see "Engineering heat pumps general"


 $[\]begin{array}{lll} t_{_{VL}} & = \mbox{ heating flow temperature (°C)} \\ t_{_{Q}} & = \mbox{ source temperature (°C)} \\ Q_{_{h}} & = \mbox{ heat output (kW), measured in accordance with standard EN 14511} \\ P & = \mbox{ power consumption for the overall unit (kW)} \\ COP & = \mbox{ Coefficient of Performance for the overall unit in accordance with standard EN 14511} \end{array}$

Performance data - cooling


Maximum cooling capacity

Belaria® pro (24) Data according to EN 14511

Cooling capacity – t_{VL} 18 °C

Energy efficiency ratio - t_{VL} 18 °C

Maximum output

Minimum output

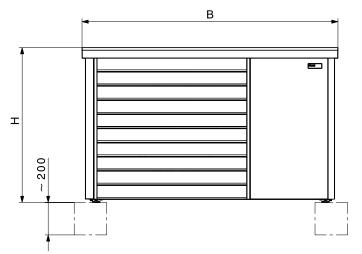
Belaria® pro (24) Data according to EN 14511

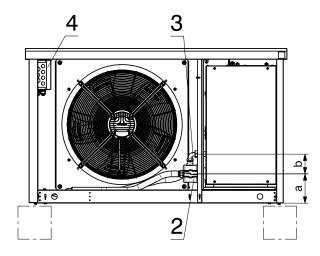
		Ma	ximum out	put	Mi	nimum outp	out
$\mathbf{t}_{_{\mathbf{VL}}}$	t _Q	Q_k	Р	EER	$\mathbf{Q}_{_{\mathbf{k}}}$	P	EER
°Ĉ	°Č	kŴ	kW		kŴ	kW	
	15	21.2	4.8	4.4	13.1	1.8	7.3
	20	21.5	6.0	3.6	13.3	2.3	5.8
7	25	20.7	6.6	3.1	13.1	2.7	4.8
1	30	20.1	7.0	2.9	12.9	3.7	3.5
	35	19.1	7.6	2.5	12.3	4.3	2.8
	40	16.7	7.7	2.2	11.4	5.4	2.1
	15	21.6	3.8	5.8	13.0	1.4	9.0
	20	21.4	4.3	5.0	13.1	1.7	7.5
12	25	21.5	5.0	4.3	13.3	2.2	6.2
12	30	21.6	6.1	3.5	13.4	2.7	5.1
	35	21.0	7.2	2.9	13.3	3.2	4.2
	40	19.3	8.1	2.4	12.4	3.6	3.4
	15	21.5	2.9	7.5	13.0	1.1	11.7
	20	21.5	3.2	6.7	13.0	1.3	9.7
40	25	21.4	3.7	5.8	13.1	1.6	8.0
18	30	21.4	4.4	4.9	13.1	2.0	6.7
	35	20.9	5.2	4.1	13.0	2.4	5.4
	40	20.4	6.2	3.3	13.3	3.0	4.4

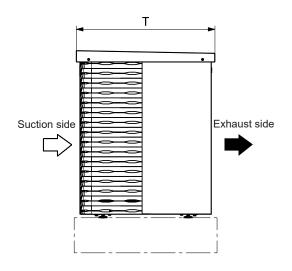
= cooling water flow temperature (°C)

= source temperature (°C) = cooling capacity (kW), measured in accordance with standard EN 14511

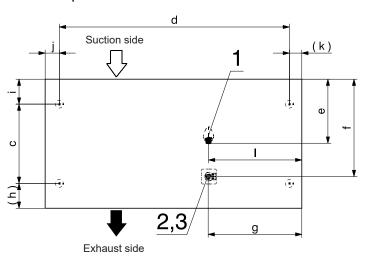
= power consumption for the overall unit (kW)


EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511


Observe daily power interruptions! see "Engineering heat pumps general"


Belaria® pro (24) Outdoor unit (Dimensions in mm)

Front view

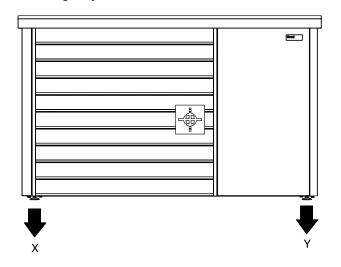


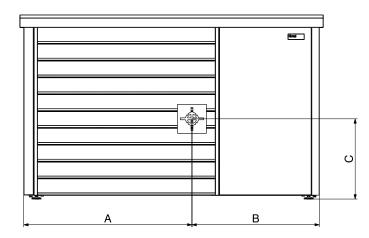
View from the left

View from top

- Condensate drain 1"
- Connection hydraulic connection line return 2
- Connection hydraulic connection line flow Electrical connection 3
- 4

11/2" ext. thread 11/2" ext. thread


Туре В Т а С g i Belaria® pro (24) 1461 1928 997 280 410 685 1750 380 800 740 150 160 100 80 590

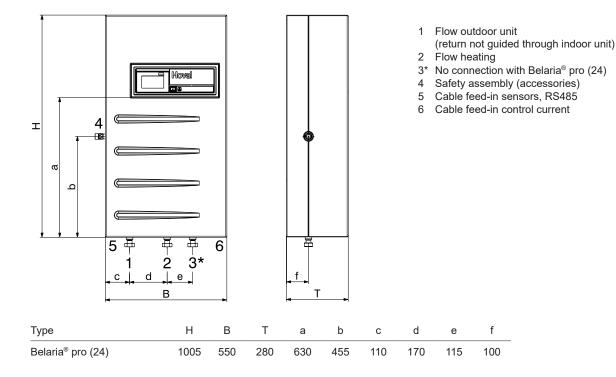


Belaria® pro (24)

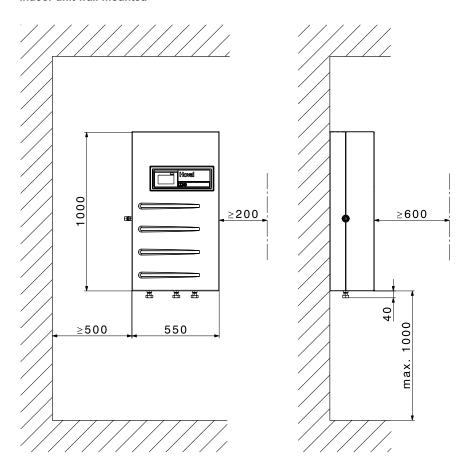
Indoor unit (Dimensions in mm)

Centre of gravity

	Po	osition (mr	Weight (kg)			
Type	Α	В	С	X	Y	
Belaria® pro (24)	1178	709	685	158	292	-

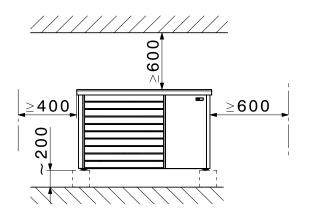

11/2" ext. th.

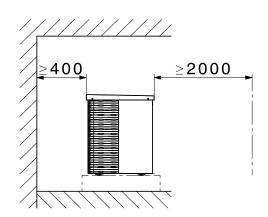
11/2" ext. th.

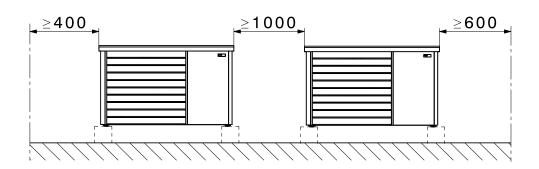

3/4" ext. th.

Belaria® pro (24) Indoor unit

(Dimensions in mm)

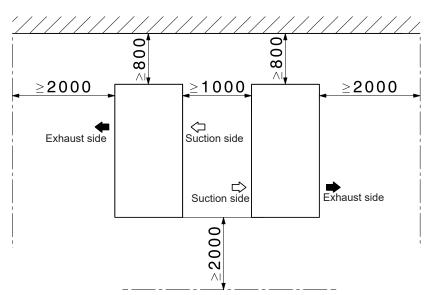

Belaria® pro (24) Indoor unit wall-mounted




To ensure good operability and accessibility to the electrical/hydraulic connections, a clearance of max. 1000 mm must be provided from the ground to the lower edge of the indoor unit.

Space requirement (Dimensions in mm)

Belaria® pro Outdoor unit

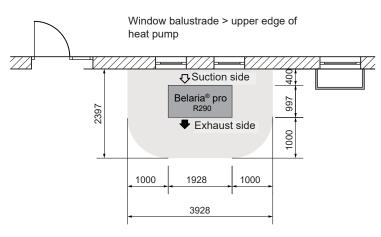


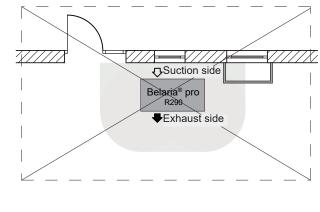
Any possible openings/recesses and ignition sources must be avoided within a radius of one meter around the outdoor unit.

In order to ensure accessibility during maintenance, a clearance of at least 600 mm upwards must be maintained. For any service work, the minimum clearances at the rear and sides of the heat pump must be observed.

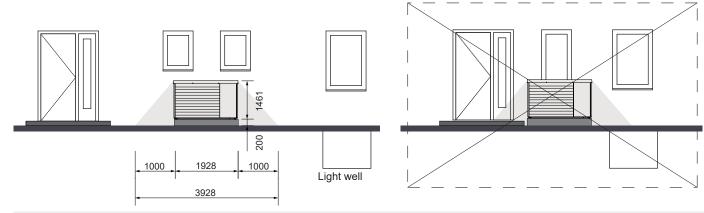
Belaria® pro Outdoor unit

View from above

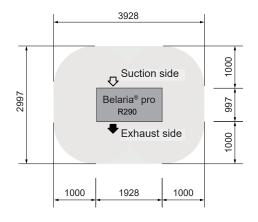


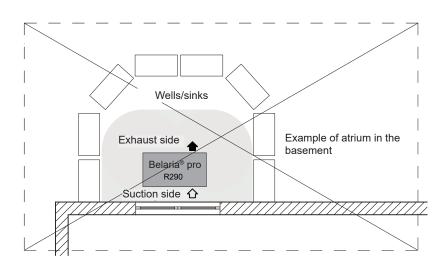


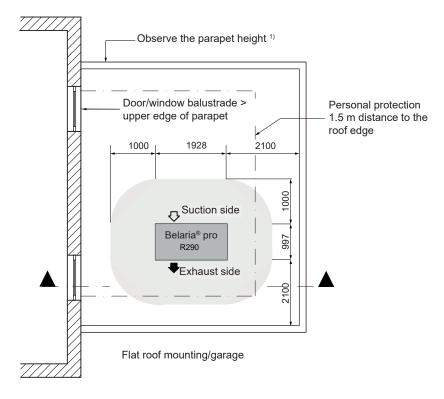
Presentation of protection areas


Belaria® pro with refrigerant R290 (Dimensions in mm)

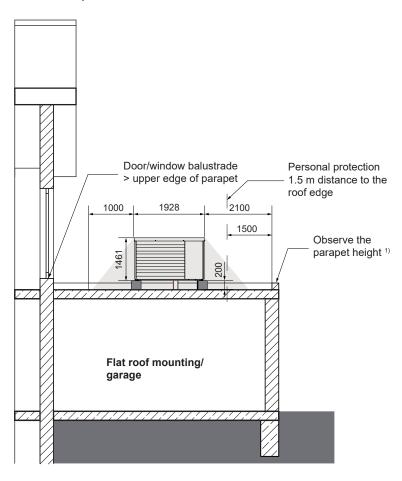
Floor plan - protection area when installed in front of a wall




View - protection area when installed in front of a wall


- The heat pump (outdoor unit) is only allowed to be placed outdoors and under no circumstances indoors.
- The outdoor unit is filled with the non-toxic, odourless and colourless but flammable refrigerant R290 (propane), which is heavier than air. If this occurs, there is a danger of fire/explosion. Therefore, all potential sources of ignition must be kept at least 1 m away in all directions. Smoking and the use of naked flames is prohibited in this area.
- Window balustrades must be higher than the upper edge of the outdoor unit in the protection area!
- The heat pump must be at least 1 m from the property boundary; observe building regulations!
- At the entrances to properties, it must be ensured that no vehicle can enter the protection area.
- To prevent the heat pump from being touched by vehicles, a collision guard must be installed if necessary. This must be located outside the protected area.

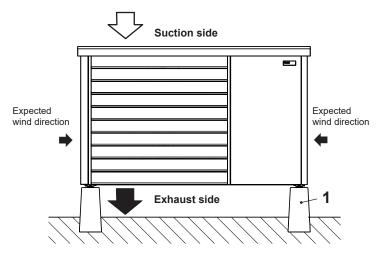
Floor plan - protection area when installed outdoors



Floor plan flat roof - protection area

1) In case of flat roof installation, the parapet must not represent a potential sink in which refrigerant could accumulate.

Section flat roof - protection area



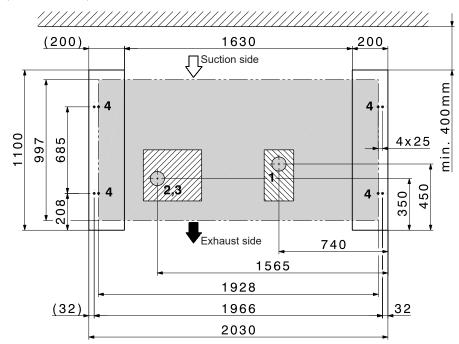
- Strict compliance with safety measures regarding combustible refrigerants.
- All standards concerning statics, wind load and access to roofs must be complied with.
 The outdoor unit must be firmly bolted onto the substructure (e.g. concrete base). The heat pump must be prevented from tilting.
- Minimum distance of the heat pump to the roof edge: 1.5 m (personal protection) + 0.6 m (working area refrigeration circuit).
- Accessibility for maintenance and repair work must be ensured. For work on the heat pump, a measuring case and test equipment, refrigerant bottle, etc. must be transported to the site, amongst other things. In addition to the safety equipment (fall protection devices, anchoring devices, etc.), this must also be taken into account for skylights, stairs, railings, etc.
- There must be no floor-to-ceiling doors/ windows to the flat roof, or balustrade must be higher than the parapet.
- Protection areas around windows must be complied with.
- There must not be any pipe vents, skylights or the like on the flat roof within a radius of 1 m from the heat pump.
- If there is a risk of frost, a siphon must be installed in the shaft immediately before the condensate drain is introduced into the downpipe.
- Condensate drain into the sewage system via a frost-proof siphon or allow it to seep away freely.

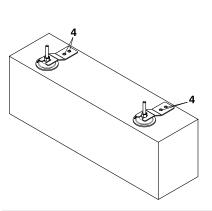
Installation variants for Belaria® pro outdoor unit

(Dimensions in mm)

Firm base on site with strip foundation

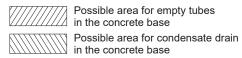
1 Concrete base on site


The base must not form a sink. A circumferential base is therefore not permitted.


Installation variants for Belaria® pro outdoor unit

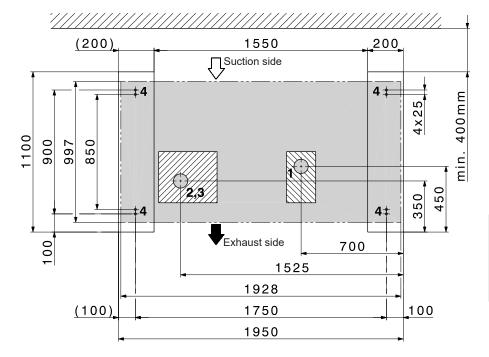
(Dimensions in mm)

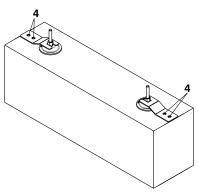
Strip foundation


Plan concrete base set (view from above)

Attachment of the outdoor unit from the outside (laterally) using the supplied clamps. The clamps are visible.

It is not necessary to remove the cladding sections.


- 1 Condensate drain area
- 2 Area FL hydraulics
 - RT hydraulics
- 3 Electrics area
- Attachment points M8 Belaria® pro (dowels in scope of delivery)


Installation variants for Belaria® pro outdoor unit

(Dimensions in mm)

Strip foundation

Plan concrete base set (view from above)

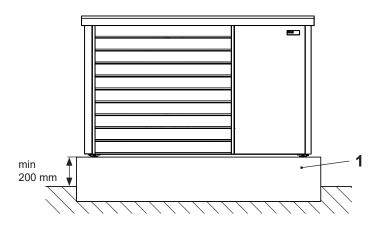
Attachment of the outdoor unit from the "inside/bottom" (grey area) of the heat pump using the supplied clamps.
The clamps are not visible.

It is necessary to remove the cladding sections.

Possible area for empty tubes in the concrete base

Possible area for condensate drain in the concrete base

Condensate drain area

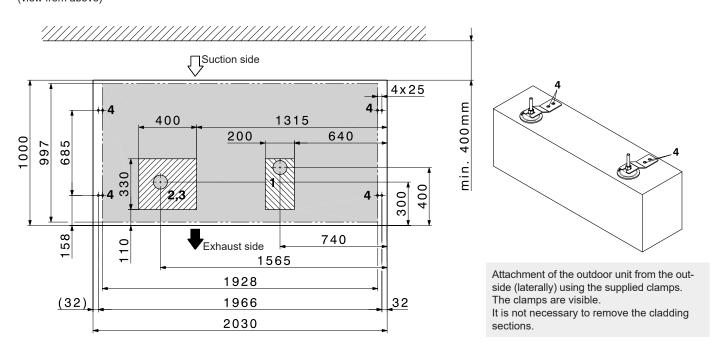

2 Area Flow hydraulics Return hydraulics

3 Electrics area

4 Attachment points M8 Belaria® pro (dowels in scope of delivery)

Installation variants for Belaria® pro outdoor unit (Dimensions in mm)

Firm base on site with floor plate



1 Floor plate on site

The base must not form a sink. A circumferential base is therefore not permitted.

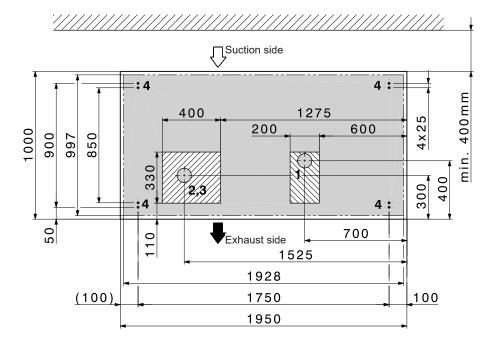
Floor plate

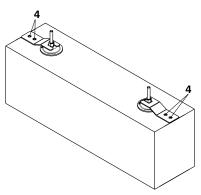
Plan (view from above)

Possible area for empty tubes in the concrete base

Possible area for condensate drain in the concrete base

- 1 Condensate drain area
- 2 Area FL hydraulics RT hydraulics
- 3 Electrics area
- 4 Attachment points M8 Belaria® pro (dowels in scope of delivery)


Installation variants for Belaria® pro outdoor unit


(Dimensions in mm)

Floor plate

Plan

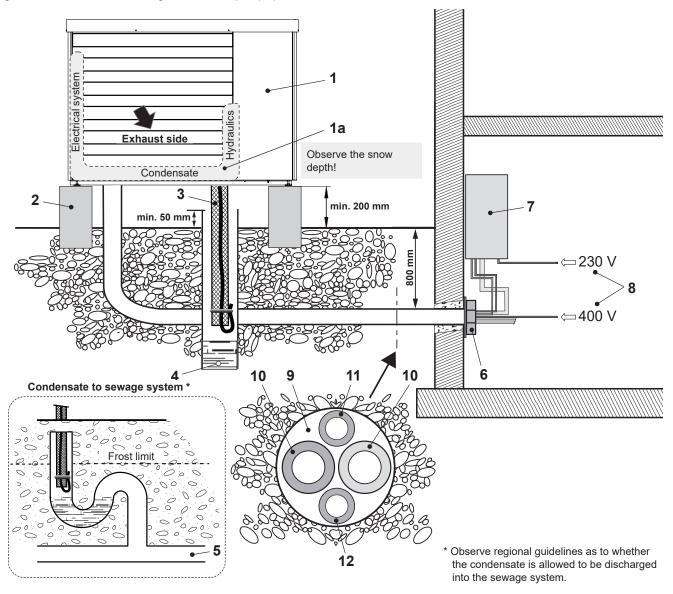
(view from above)

Attachment of the outdoor unit from the "inside/bottom" (grey area) of the heat pump using the supplied clamps.
The clamps are not visible.

It is necessary to remove the cladding sections.

Possible area for empty tubes in the concrete base

Possible area for condensate drain in the concrete base


1 Condensate drain area

2 Area FL hydraulics RT hydraulics

3 Electrics area

4 Attachment points M8 Belaria® pro (dowels in scope of delivery)

Configuration and connection diagram Belaria® pro (24)

- 1 Outdoor unit
- 1 a Space for connection of hydraulics (FL + RT), condensate drain and electrics.
- 2 Concrete base
- 3 Condensate drain heat pump, drain pipe DN 100
- 4 Variant 1: Seepage (duct/gravel layer)
- 5 Variant 2: Discharging into the sewage system (penetration into the soil must be made leak-tight)
- 6 Wall lead-through (hydraulic and electrical connections)
- 7 Belaria® pro (24) indoor unit

- Main current:
 3 x 400 V/50 Hz
 Control current:
 1 x 230 V/50 Hz
 Electric heating element main current:
 3 x 400 V/50 Hz
 Network cables (optional)
- 9 Empty tube for hydraulics and electrics
- 10 Connection line FL + RT
- 11 Empty tube for electrical connections for outdoor unit Main current outdoor unit: 3 x 400 V/50 Hz Control current outdoor unit: 1 x 230 V/50 Hz
- 12 Empty tube for data bus RS485

Requirements and directives

The general requirements and directives listed in the chapter Engineering apply.

Set-up

- The distance between the outdoor and indoor unit must be as short as possible. Only short and simple routing of lines guarantees cost effectiveness and low heat losses.
- The maximum permitted single cable length is 30 m between the outdoor unit, via the indoor unit and the buffer storage tank. This must not be exceeded. In general, the customer must assess whether the next larger pipe dimension is more suitable due to the pressure drop.
- There must be no building openings (windows, doors, shafts, ventilation openings, etc.) within a radius of 1 m from the outdoor unit and no potential ignition sources must be present.
- · Wall ducts into the building must be airtight.
- The outdoor unit must not be placed in or near floor recesses.
- The outdoor unit must not be placed closer than 1 m to the boundary of the property.
 Country-specific regulations must be observed.
- The air intake and air outlet sides must not be narrowed or blocked. The air outlet side must be unobstructed (> 2 m).
- Due to efficient water heating, the line length with the Belaria[®] pro between the calorifier and the indoor unit is not allowed to be more than 10 m.
- When using glycol (antifreeze) primary and/or secondary – a separating system must be used.
- Filling the entire system with glycol or a frost protection agent/water mixture is considered improper use and is not permitted. If this is nevertheless desired for frost protection reasons, the system must be designed with a system separation. Only environmental compatible frost protection agent is allowed to be used.

Outdoor unit

Important safety instruction

The heat pump (outdoor unit) is only allowed to be placed outdoors and under no circumstances indoors.

The outdoor unit is filled with the non-toxic, odourless and colourless but flammable refrigerant R290 (propane), which is heavier than air. If this occurs, there is a danger of fire/explosion. Therefore, all potential sources of ignition must be kept at least 1 m away in all directions. Smoking and the use of naked flames is prohibited in this area.

The outdoor unit is installed outdoors. The installation location must be selected carefully. It is essential that the following ancillary conditions are met:

- The maximum line length must not be exceeded.
- The connection lines must be laid insulated and frost-proof.

- The installation location must be chosen in such a way that no noise pollution can occur (do not install near bedrooms, keep a distance from neighbours), hedges and bushes can have a sound-absorbing effect.
- Unobstructed air inflow and outflow must be possible.
- It is imperative that the minimum distances are observed (see Dimensions/Space requirement).
- The intake air must be free of impurities such as sand and aggressive substances such as ammonia, sulphur, chlorine etc.
- The outdoor unit must be installed on a load-bearing fixed structure.
- If the unit is installed at wind-prone locations, the alignment of the heat pump must be selected in such a way that the expected wind direction is crossways to the suction direction of the outdoor unit.
- If an alternative installation in areas subject to strong winds cannot be avoided, an additional wind shield in the form of a hedge, for example, should be installed, or additional fastening should be provided for the outdoor unit
- At exposed installation locations prone to wind load, e.g. on building roofs, the surface load on the upper horizontal cover surface of the heat pump caused by wind suction must not exceed a value of 2000 N/m². The heat pump casing might be damaged if this value is not complied with.
- The permitted surface load must be determined in accordance with the specifications of standard EN 1991-1-1. Compliance must be checked by a qualified specialist. A professional inspection of the actual conditions on site is mandatory and must be carried out by a qualified specialist.
- When planning and installing the heat pump in locations exposed to wind load, please contact your sales consultant in good time.
- Notice on installing the cover: If the cover of the heat pump has been removed, it must be properly reinstalled after the work has been completed. Make sure that the cover is fully connected to the heat pump using all the screw holes provided, to ensure stability and tightness.
- If the installation location is not protected against snowfall, it must be chosen in such a way that the evaporator remains free of snow.
- The outdoor unit must always be installed on a solid surface in a horizontal position.
 This can be achieved by means of concrete bases or a floor plate.
- The load-bearing capability must be adequate. The unit must be fixed with 4 M8 screws.
- Air heat pumps generate condensate during operation. This can amount to 10 litres per defrost cycle within 2 minutes for the outdoor unit of the Belaria® pro.
- The condensate drain must be frost-proof so that the condensate can flow away without problems even at outdoor temperatures below 0 °C.

- If the discharge is into the sewage system, a siphon must be provided and the duct lead-through into the ground must be sealed so that no refrigerant can enter the sewage system uncontrolled.
- If there is a risk of frost, a siphon must be installed in the shaft immediately before the condensate drain is introduced into the downpipe.
- The condensate drip tray included in the outdoor unit is already equipped with tray heating at the factory that thus prevents freezing.
- The condensate drain line is also secured with the preassembled heating tape.
- The air outlet has increased susceptibility to frost. Gutters, water pipes and water containers must not be situated right next to the outlet.
- If installed near the coast, the location must be at least 5 km from the coastline. If this safe distance is not complied with, increased corrosion can be expected. These cases are excluded from the warranty.
- To prevent damage caused by animals such as rodents or insects, all cable ducts must be properly sealed.
- The hydraulic lines from the heat pump can transmit structure-borne noise. Therefore, structure-borne noise decoupling should be provided, e.g. with sound-insulating hoses.

A strainer is located in the outdoor unit. At least one sludge and magnetite separator must be installed in the heating return.

Flat roof installation

Flat roof installation of the Belaria® pro is possible under the following conditions:

- Strict compliance with safety measures regarding flammable refrigerants (see below).
- All standards concerning statics, wind load and access to roofs must be complied with. The outdoor unit must be firmly bolted onto the substructure (e.g. concrete base). The heat pump must be prevented from tilting.
- Minimum distance of the heat pump to the roof edge: 1.5 m (personal protection) + 0.6 m (working area refrigeration circuit).
- Accessibility for maintenance and repair
 work must be ensured. For work on the
 heat pump, a measuring case and test
 equipment, refrigerant bottle, etc. must
 be transported to the site, amongst other
 things. In addition to the safety equipment
 (fall protection devices, anchoring devices,
 etc.), this must also be taken into account for
 skylights, stairs, railings, etc.
- At exposed installation locations prone to wind load, e.g. on building roofs, the surface load on the upper horizontal cover surface of the heat pump caused by wind suction must not exceed a value of 2000 N/m². The heat pump casing might be damaged if this value is not complied with.
- The permitted surface load must be determined in accordance with the specifications of standard EN 1991-1-1. Compliance must be checked by a qualified specialist. A professional inspection of the actual conditions on site is mandatory and must be carried out by a qualified specialist.

- When planning and installing the heat pump in locations exposed to wind load, please contact your sales consultant in good time.
- Notice on installing the cover: If the cover of the heat pump has been removed, it must be properly reinstalled after the work has been completed. Make sure that the cover is fully connected to the heat pump using all the screw holes provided, to ensure stability and tightness..
- The heat pump contains electrically operated components and must be integrated in the structural lightning and surge protection for roof structures.

Safety measures to be complied with

- There must be no building openings (windows, doors, shafts, ventilation openings, etc.) within a radius of 1 m from the outdoor unit and no potential ignition sources must be present.
- Wall ducts into the building must be airtight.
- The outdoor unit must not be placed in or near floor recesses.
- The outdoor unit must not be placed closer than 1 m to the boundary of the property.
 Country-specific regulations must be observed.
- The air intake and air outlet sides must not be narrowed or blocked. The air outlet side must be unobstructed (> 2 m).
- The condensate is allowed to be directed into a shaft. A siphon must be installed upstream of the connection to the downpipe. The siphon must be located inside the building.

Indoor unit

- The installation location must be selected in accordance with the valid requirements and directives.
- The indoor unit must be installed in a room protected against frost, by an approved specialist company. Room temperature must be between 5 °C and 25 °C.
- Installation in wet rooms, dusty rooms or rooms with a potentially explosive atmosphere is not permitted.
- To minimise vibration and noise inside the building, the inside of the heat pump should be isolated as well as possible from the building structure. The screed must be recessed around the indoor unit. For example, indoor units should never be installed on lightweight ceilings/floors.
- The connections for the heat pump or heating flow are located at the bottom of the Belaria® pro indoor unit.
- Due to the accessibility to the hydraulic system, the distances must be maintained on all sides (see Dimensions/Space requirements).

Electrical connections

- The electrical connection must be carried out by a qualified technician and registered with the responsible energy supply company. The relevant electrical installation company is responsible for ensuring that electrical connection is carried out in accordance with standards and that safeguard measures are put in place.
- The mains voltage at the connection terminals of the heat pump must be 400 V or 230 V ± 10 %. The connection lines specified in the technical data must be checked by the electrical company carrying out the work depending on the line length, the routing type and the type of line.
- A fault-current circuit breaker is recommended. Country-specific requirements must be complied with. If the "fault-current circuit breaker" safeguard measure is implemented by the electrical company, a separate fault-current circuit breaker is recommended for the heat pump.
- This fault-current circuit breaker must be of the all-current-sensitive type B (IΔN ≥ 300 mA). The specified RCCB types apply to the heat pump regardless of externally connected components (refer to assembly instructions, data sheets).
- Owing to the starting currents that occur, circuit breakers with a type "C" or "K" tripping characteristic are to be used for the main circuit.
- For the control circuit and additional electric heating (if present), circuit breakers with a type "B" or "Z" tripping characteristic are sufficient.
- The electrical connection and feeder lines must be copper cables.
- Please refer to the wiring diagrams for electrical details.
- The wall feedthrough should slope down from the inside to the outside.
- To avoid damage, the opening should be padded on the inside or, for example, lined with a PVC pipe.
- After installation, the wall opening must be sealed with a suitable sealing compound on site, observing the fire protection regulations

Routing of the hydraulic connection lines

- If the hydraulic connection lines are laid in the ground, this must be done in a protective tube. For example, this can be a PVC pipe with a diameter of 150 mm.
- Wall ducts must be sealed to the outside on site.
- After the hydraulic connection lines have been laid, they must be checked for damage and reinsulated. In case of cooling, condensate can form on the pipes.
- The hydraulic connection lines must be laid decoupled from the building and must never be laid flush-mounted.

- Care must be taken to ensure that water pipes do not pass through the sleeping or living areas.
- Shut-off valves must be installed on site in accordance with the corresponding hydraulic diagram. The shut-off valves are not allowed to be opened until immediately before commissioning.
- The danger of frost damage must be taken into account if there are prolonged power outages.
- False flow rates as a result of incorrect dimensions of the pipework, incorrect fittings or improper pump operation can cause damage to the heat pump.

Room cooling

- Room cooling can be provided by fan convectors and is recommended. The connection lines for the fan convectors must have condensation-proof insulation. In addition, the condensate from the fan convectors must be drained off.
- If panel heating is used for room cooling, various criteria such as temperatures below the dewpoint or the temperature profiles must be allowed for, and can lead to costly consequential damage in the case of inadequate planning or incorrect use.
 We recommend that you consult Hoval.

Further guidelines

see "Engineering"

Connection on drinking water side

- The hydraulic connection is made according to the information in the corresponding diagrams from Hoval.
- According to the Drinking Water Regulation and DIN 50930-6, the domestic hot water storage tank is suitable for normal drinking water (pH value > 7.3).
- The connection piping can be made using galvanised pipes, stainless steel pipes, copper pipes or plastic pipes.
- The connections must be made pressuretight.
- The safety devices tested for the components in accordance with DIN 1988 and DIN 4753 must be installed in the cold water pipe.
- The 10 bar operating pressure stated on the data plate is not allowed to be exceeded. Install a pressure reducing valve if necessary.
- A suitable water filter must be installed in the cold water pipe.
- A water softener must be installed if the water is hard.

Installation on heating side

- All pertinent laws, regulations and standards for heating house pipework and for heat pump systems must be complied with.
- A strainer is located in the outdoor unit. At least one sludge and magnetite separator must be installed in the heating return.
- The safety and expansion devices for closed heating systems must be provided in accordance with EN 12828.

- Dimensioning of the pipework must be done according to the required flow rates and given pressure drops.
- Ventilation possibilities must be provided at the highest points and drainage possibilities at the lowest points of the connection lines.
- To prevent energy losses, the connection lines must be insulated with suitable material in accordance with local regulations.

Transport and storage

- When removing the packaging, check the outdoor unit for damage. If the outdoor unit was damaged during transport or storage, contact Hoval customer service, a service partner or a licensed specialist immediately. They must carry out a leak test with a suitable leak detector. In the event of a leak, the outdoor unit must be repaired.
- Store the outdoor unit in a cool place without fire hazard and without direct exposure to heat sources. The ambient temperature must not exceed 43 °C.
- The same regulations apply for storage as for installation (no recesses, ventilation pipes, ignition sources in the storage area).
- The outdoor unit must not be stored in closed rooms, cellars or garages.
- The outdoor unit is only allowed to be stored outdoors.
- During transport, ensure sufficient ventilation in the closed vehicle, also when parking and stopping.
- Storage in passageways, escape routes or in front of entrances or exits is not permitted.
- Ignition sources such as naked flames, switched-on gas appliances, electric heaters, etc. must be kept away from the unit.
- Transport and storage only in upright position. Protect from mechanical damage and from falling over or falling down (make sure the load is secure).

- To prevent damage during transport, the outdoor unit should be moved to its final installation location as far as possible in packed state on the wooden pallet with a forklift or lift truck.
- Transport by crane: The outdoor unit can be lifted by a crane and transported to the installation site. For this purpose, there are three crane hooks below the cover with openings for the passage of the transport straps.

Prerequisites for commissioning

- Commissioning at cold outdoor temperatures is only possible if the system is preheated on site (e.g. with an electric bake-out device). During commissioning, the room temperature of the heated rooms must be at least 15 °C (compressor operation is not possible below this temperature, as there would be too little energy for defrosting). If a buffer storage tank is provided, its heating water temperature is not allowed to be less than 20 °C during commissioning.
- A heat pump should not be used for drying out of the building (screed heating), as this can significantly reduce the service life of the device. Alternatively, heating via a mobile heating station or E-set is a sensible option. This is particularly true for air/water heat pumps, since the heating output here is strongly dependent on the outdoor temperature and drying out of the building is not possible at temperatures below the frost line in the building carcass.

Looking for the appropriate hydraulic schematic? Please contact your local Hoval partner.

Hoval Belaria[®] pro Modulating monoblock heat pump for heating and cooling.

Monoblock heat pump set up outdoors consisting of outdoor unit and electrical box.

Belaria® pro outdoor unit

- Compact floor-mounted air/water heat pump
- Elegant, extremely quiet and efficient outdoor unit
- Casing with sheet metal cladding, powdercoated, colour anthracite (DB703)
- Two completely separated cooling units with the refrigerant R290
- Integrated components:
 - 2 speed-controlled scroll compressors
 - 2 straight fin evaporators
 - 2 speed-controlled axial fans with FlowGrid (inlet grille)
 - 2 plate condensers made of stainless steel/copper
 - 2 built-in gas separators with safety valve 2.5 bar
 - 2 speed-controlled high-efficiency pumps
- 2 flow rate sensors/heat meters
- 2 condensate drip trays including tray heating and condensate heating tape for channelling all the condensate in the outdoor unit, fixed installation, 1" connection
- integrated vibration-damping feet for effective structure-borne noise decoupling
- With cooling function with corresponding hydraulics
- · Hydraulic connections behind louvre grille
 - Heating connections 2"
 - Filter ball valve installed in the heat pump return
- Electrical connections behind louvre grille
 - 400 V main power supply
 - 230 V control current, supplied from the electrical box
 - Data cable for bus connection to the electrical box
- With support rail for fixing the outdoor unit on the ground

Belaria® pro electrical box

- Compact wall-mounted electrical box
- Casing with sheet metal cladding, powder-coated, flame red (RAL 3000)
- TopTronic® E control installed with TopTronic® E control module
- With 2 WFA-200S automatic heat pump devices
- Integrated control functions for
 - 2 heating/cooling circuits with mixer
- 2 heating/cooling circuits without mixer
- 1 hot water charging circuit
- bivalent and cascade management
- Optional installation control set (switching contactor) for activating an external electric heating element
- Electrical connections introduced from bottom
- With fitting accessories for fixing the electrical box to the wall (without screws)
- Maximum cascading: 4 Belaria® pro (40,50), since 2 TTE-WEZ are installed per unit

Model range Belaria [®] pro type	35 °C 55 °C	Heat o A-7W35 kW	utput ¹⁾ A2W35 kW	Cooling capacity 1) A35W18 kW
(40)		11.9-35.4	11.8-38.4	13.0-41.8
(50)		11.9-44.2	11.8-48.0	13.0-41.8
	$A^{***} \to D A^{***} \to D$			

Energy efficiency class of the compound system with control.

1) Modulation range

Delivery date: from August 2025

TopTronic® E controller

Control panel

- 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp
- Mains isolator

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- Service and maintenance function
- Fault message management
- · Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Integrated control functions for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - Bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max. 1 module expansion:
 - Module expansion heating circuit or
 - Module expansion Universal or
- Module expansion heat balancing
- Can be networked with up to 16 controller modules in total:
 - Heating circuit/DHW module
 - Solar module
 - Buffer module
 - Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module **or**
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls"

EnergyManager PV smart

Feature to increase self-generated power consumption in use with HovalConnect.

If a HovalConnect gateway is used together with the heat pump, the EnergyManager PV smart feature is available. This allows the heat pump to be operated preferentially at times of higher solar radiation. The feature uses online weather data on the current solar radiation for this purpose and can be adjusted by means of an associated threshold value. The self-consumption of electricity from an existing photovoltaic plant is thus increased and the purchase of grid electricity is reduced. This results in a lasting and significant cost-saving potential without further investment costs for the customer.

Delivery

- Outdoor unit and electrical box delivered packaged separately
- Sensor kit included loose in the electrical box:
 - Outdoor sensor (AF)
 - Calorifier sensor (SF1/SF1.1 and SF2/ SF2.1)
 - Flow sensor (VF1)
 - Plant flow sensor heating (AVF H)
 - Plant flow sensor calorifier (AVF W)

On site

- · Wall ducts for hydraulic connection lines
- Hydraulic connection lines from the outdoor unit to the inside of the building
- Electrical connection line from the outdoor unit to the electrical box
- · Strip foundation, floor plate

Belaria[®] pro (40,50)

Туре		(40)	(50)
• Energy efficiency class of the compound system with control $^{1)}$ (A+++ \rightarrow D)	35 °C/55 °C	A+++/A+++	A+++/A+++
• Room heating energy efficiency "moderate climate" 35 °C ηS	%	202	210
• Room heating energy efficiency "moderate climate" 55 °C ηS	%	155	163
• Seasonal coefficient of performance moderate climate 35 °C/55 °C	SCOP	5.1/3.9	5.3/4.1
Seasonal energy efficiency ratio A35W18 ²⁾	SEER	5.7	5.7
Seasonal energy efficiency ratio A35W7 ²⁾	SEER	3.3	3.3
Max./min. performance data heating and cooling in acc. with EN 14511			
Max. heat output A2W35	kW	38.4	48.0
Max. heat output A-7W35	kW	35.4	44.2
Min. heat output A15W35	kW	12.6	12.6
Max. cooling capacity A35W18	kW	41.8	41.8
Max. cooling capacity A35W7	kW	38.2	38.2
Min. cooling capacity A35W18	kW	13.0	13.0
Nominal output data heating in acc. with EN 14511			
Nominal heat output A2W35	kW	22.6	28.2
Coefficient of performance A2W35	COP	5.1	4.4
Nominal heat output A7W35	kW	23.2	32.1
Coefficient of performance A7W35	COP	5.7	5.3
Nominal heat output A-7W35	kW	27.7	37.1
Coefficient of performance A-7W35	COP	3.6	3.2
Nominal output data cooling in acc. with EN 14511			
Nominal cooling capacity A35W18	kW	35.8	35.8
Energy efficiency ratio A35W18	EER	4.1	4.1
Nominal cooling capacity A35W7	kW	25.0	25.0
Energy efficiency ratio A35W7	EER	3.0	3.0
Sound data			
Max. sound power level outdoor unit, day operation	dB(A)	65	65
Max. sound power level outdoor unit, night operation	dB(A)	59	59
Sound power level EN 12102 outdoor unit 3)	dB(A)	55	56
Sound pressure level 5 m ⁴⁾	dB(A)	36	37
Sound pressure level 10 m ⁴⁾	dB(A)	30	31
Hydraulic data			
Max. flow temperature	°C	70	70
• Max. flow rate heating side with A7W35, ΔT 6 K	m³/h	6.3	7.9
• Nominal flow rate heating side with A7W35, ΔT 5 K	m ³ /h	5.1	5.7
Max. flow rate heating side cooling, ΔT 3 K	m ³ /h	9.0	11.3
Pressure drop heating side at nominal flow	kPa	18	22
	kPa		
Residual overpressure of heating pump at nominal flow Residual overpressure of heating pump at may flow rate.		57	46
Residual overpressure of heating pump at max. flow rate	kPa	40	37
• Max. operating pressure on the heating side ⁵⁾	bar	2.5	2.5
Flow/return connection heating	G	2"	2"
 Nominal air volume outdoor unit (A7W35 and nominal rotation speed) 	m³/h	2 x 6600	2 x 6600
Max. air volume outdoor unit (A7W35 and max. rotation speed)	m³/h	2 x 8000	2 x 8000
Hydraulic connection line, max. length/dimension inside	m/DN	30/50	30/50

Туре		(40)	(50)
Cooling technical data			
• Compressor		modulating	modulating
• Refrigerant		R290	R290
Refrigerant filling quantity	kg	Circuit 1 = 4.8	Circuit 1 = 4.8
	-	Circuit 2 = 4.9	Circuit 2 = 4.9
Compressor oil type		PZ46M	PZ46M
Compressor oil filling quantity	1	0.9	0.9
Electrical data			
Electrical connection compressor	V/Hz	3~400/50	3~400/50
Control electrical connection	V/Hz	1~230/50	1~230/50
Electrical connection electric heating element	V/Hz	-	-
Max. heat pump operating current	Α	39.2	39.2
Max. compressor operating current	Α	2 x 19.0	2 x 19.0
Max. fan operating current	Α	2 x 0.3	2 x 0.3
Max. operating current electric heating element	Α	-	-
Max. heat pump power consumption	kW	16.8	24.0
Max. fan power consumption	W	2 x 194	2 x 194
 Max. starting current heat pump I_A 	Α	19.0	19.0
Output factor		0.88	0.88
External protection main current	Α	C/K 40	C/K 40
External protection control current	Α	B/Z 13	B/Z 13
External protection electric heating element	Α	-	-
Fault-current circuit breaker		RCCB type B,	I∆n ≥ 300 mA
Recommended cable		Cu 5 x 1	0.0 mm ²
Nominal electrical output with A-7W35	kW	7.7	11.5
Max. electrical output with A-20W60	kW	16.7	24.0
Active power of heat pump	kW	15	21.1
Max. operating voltage Ub	V	3~400	3~400
Max. operating current lb	Α	38.6	38.6
Max. inverter output current	Α	2 x 24.0	2 x 24.0
Pulse count		3	3
 Max. switching frequency per hour/day at tn 0 °C 	n	3/72	3/72
Continuous load changes		N	
Starting up under load		N	
• Feedback into the power system		N	
Power factor correction		N	
Starting up assistance		Output	
Type of starting up assistance		Frequency	
• Frequency converter		60-360 Hz (
Starting current/nominal current ratio		0.4	49
Dimensions/weight of outdoor unit			
• Dimensions (H x W x D)	mm		50 x 1005
• Weight	kg	1000	1000
Protection class		IP24	IP24
Dimensions/weight of electrical box			
• Dimensions (H x W x D)	mm	750 x 60	
• Weight	kg	25	25
Protection class		IP20	IP20

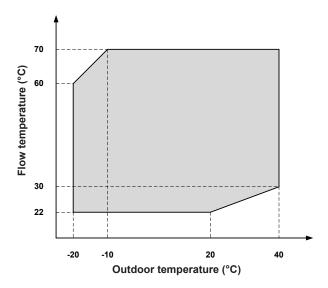
¹⁾ Related to moderate climate.

Using a fault-current circuit breaker RCCB type B, $I\Delta n \ge 300$ mA is recommended. Country-specific regulations must be observed.

²⁾ EN 14825

³⁾ The sound values apply when the evaporator is clean. These values are temporarily exceeded before defrosting.

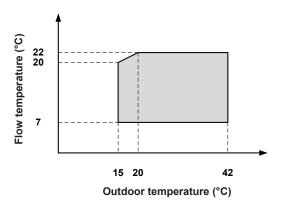
⁴⁾ The sound pressure levels indicated apply if the outdoor unit is placed at a building façade. These values are reduced by 3 dB(A) if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB(A).


⁵⁾ Maximum operating pressure of the system without isolating system 2.5 bar, because the outdoor unit is protected with 2.5 bar. Provide general protection of the system in the building with 3.0 bar.

An isolating system must be provided for system pressures of 2.5 bar or more.

Diagrams of areas of application

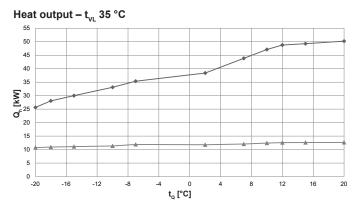
Heating and domestic hot water

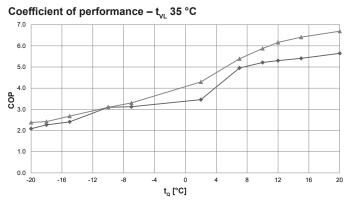

Belaria® pro (40,50)

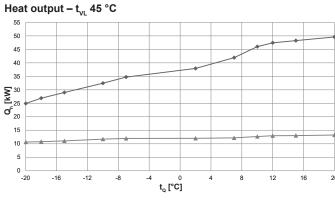
Area of application of the heat pump for heating/domestic hot water

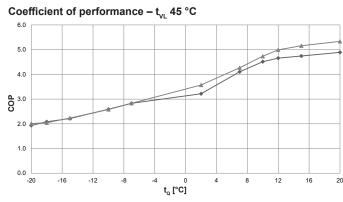
Cooling

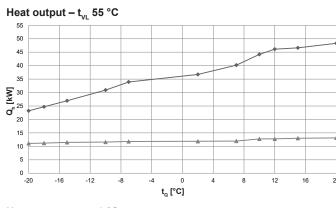
Belaria® pro (40,50)

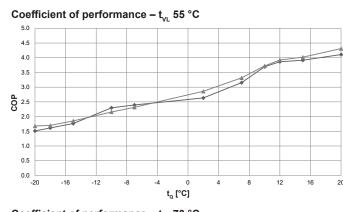


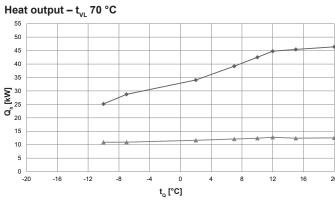

Area of application of the heat pump for cooling

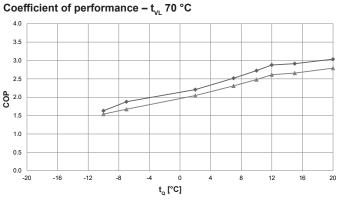

Maximum heat output allowing for defrosting losses


Belaria® pro (40)


Data according to EN 14511







= heating flow temperature (°C)

= source temperature (°C) = heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Maximum output

Minimum output

Belaria® pro (40) Data according to EN 14511

t _{∨∟} °C	t₀ °C	Ma Q _h kW	aximum out P kW	COP	Q _h kW	nimum outp P kW	COP
	-20	25.6	12.3	2.1	10.8	4.5	2.4
	-18	28.1	12.4	2.3	10.9	4.5	2.4
	-15	30.0	12.5	2.4	11.1	4.1	2.7
	-10	33.1	10.7	3.1	11.4	3.7	3.1
0.5	-7	35.4	11.3	3.1	11.9	3.6	3.3
35	2 7	38.4 43.8	11.1	3.5	11.8 12.1	2.7 2.2	4.3
	10	43.6 47.1	8.8 9.0	5.0 5.2	12.1	2.2	5.4 5.9
	12	48.8	9.0	5.3	12.4	2.0	6.2
	15	49.3	9.1	5.4	12.6	2.0	6.4
	20	50.2	8.9	5.6	12.7	1.9	6.7
	-20	24.9	12.9	1.9	10.6	5.3	2.0
	-18	26.9	12.9	2.1	10.8	5.3	2.0
	-15	29.0	13.1	2.2	11.1	5.0	2.2
	-10	32.4	12.5	2.6	11.7	4.5	2.6
	-7	34.7	12.3	2.8	12.0	4.2	2.8
45	2	37.9	11.8	3.2	12.0	3.4	3.6
	7	41.9	10.2	4.1	12.2	2.9	4.3
	10	46.0	10.2	4.5	12.7	2.7	4.7
	12	47.4	10.2	4.7	13.0	2.6	5.0
	15 20	48.2 49.6	10.2 10.1	4.7 4.9	13.0 13.2	2.5 2.5	5.2 5.3
	-20	24.0	14.3	1.7	11.5	5.8	2.0
	-18	25.8	14.1	1.8	11.6	5.8	2.0
	-15	28.0	14.2	2.0	10.9	5.4	2.0
	-10	31.7	13.0	2.4	11.2	5.0	2.3
	-7	34.8	13.4	2.6	11.5	4.6	2.5
50	2	37.3	12.9	2.9	11.7	3.7	3.1
	7	41.1	11.5	3.6	12.0	3.2	3.7
	10	45.1	11.1	4.1	12.3	3.0	4.1
	12	46.8	11.1	4.2	12.4	2.9	4.3
	15	47.4	11.0	4.3	12.5	2.8	4.4
	20	49.0	11.0	4.5	12.6	2.8	4.5
	−20 −18	23.2 24.7	15.3 15.3	1.5 1.6	11.1 11.2	6.6 6.6	1.7 1.7
	-15 -15	27.0	15.3	1.8	11.5	6.2	1.7
	-10	30.9	13.5	2.3	11.6	5.4	2.2
	-7	33.9	14.2	2.4	11.8	5.1	2.3
55	2	36.7	14.0	2.6	11.9	4.2	2.9
	7	40.2	12.7	3.2	12.0	3.6	3.3
	10	44.2	12.0	3.7	12.8	3.4	3.7
	12	46.1	11.9	3.9	12.8	3.3	3.9
	15	46.6	11.9	3.9	13.0	3.2	4.0
	20	48.3	11.8	4.1	13.1	3.0	4.3

⁼ heating flow temperature (°C)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Further performance data - heating see next page

Observe daily power interruptions! see "Engineering heat pumps general"

⁼ source temperature (°C)

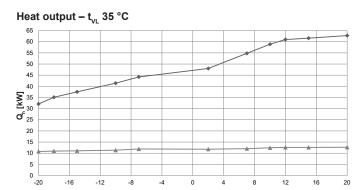
⁼ heat output (kW), measured in accordance with standard EN 14511

⁼ power consumption for the overall unit (kW)

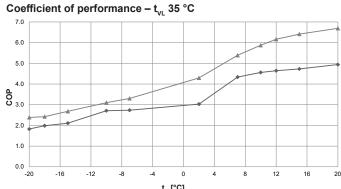
Belaria® pro (40) Data according to EN 14511

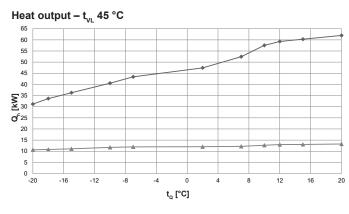
		Ma	ximum out	out	Mi	nimum outp	out
t _{v∟} °C	t _o °C	$\mathbf{Q}_{_{\mathrm{h}}}$	Р	COP	$\mathbf{Q}_{_{\mathbf{h}}}$	Р	COP
°C	°Č	kŴ	kW		kŴ	kW	
	-20	22.3	16.7	1.3	10.8	7.1	1.5
	-18	23.6	16.8	1.4	10.9	7.1	1.5
	-15	25.9	16.4	1.6	11.2	6.7	1.7
	-10	30.1	15.3	2.0	11.5	6.0	1.9
	-7	33.1	15.0	2.2	11.6	5.6	2.1
60	2	36.1	15.0	2.4	11.3	4.8	2.3
	7	39.3	14.0	2.8	12.1	4.2	2.9
	10	43.3	12.8	3.4	12.4	3.8	3.2
	12	45.5	12.8	3.6	12.8	3.8	3.4
	15	45.8	12.8	3.6	12.8	3.7	3.5
	20	47.5	12.5	3.8	12.9	3.5	3.7
	-20	-	-	-	-	-	-
	-18	-	-	-	-	-	-
	-15	-	-	-	-	-	-
	-10	25.2	15.4	1.6	10.9	7.1	1.5
	-7	28.8	15.3	1.9	10.9	6.5	1.7
70	2	34.1	15.4	2.2	11.6	5.7	2.0
	7	39.2	15.6	2.5	12.1	5.2	2.3
	10	42.5	15.6	2.7	12.4	5.0	2.5
	12	44.8	15.6	2.9	12.8	4.9	2.6
	15	45.4	15.6	2.9	12.4	4.7	2.7
	20	46.4	15.3	3.0	12.6	4.5	2.8

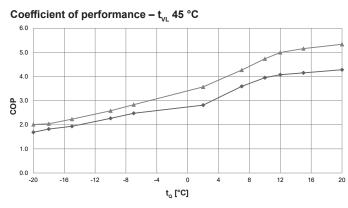
heating flow temperature (°C)
 source temperature (°C)
 heat output (kW), measured in accordance with standard EN 14511
 power consumption for the overall unit (kW)

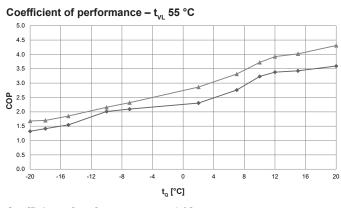

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

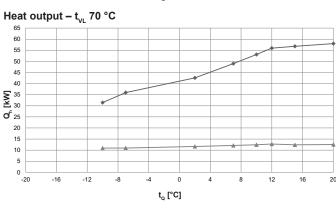
Observe daily power interruptions! see "Engineering heat pumps general"

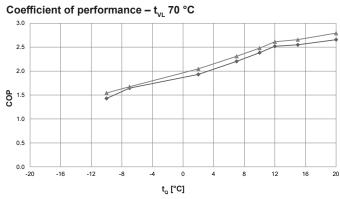

Maximum heat output allowing for defrosting losses


Belaria® pro (50)


Data according to EN 14511


 $t_{_{Q}}$ [°C]





= heating flow temperature (°C)

= source temperature (°C) = heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Maximum output

Minimum output

Belaria® pro (50) Data according to EN 14511

t _{∨L} °C	t _Q °C	$\mathbf{Q}_{_{h}}$	aximum out P	out COP	$Q_{_{\rm h}}$	nimum outp	out COP
°C		kW	kW		kW	kW	
	-20	32.1	17.6	1.8	10.8	4.5	2.4
	-18	35.1	17.7	2.0	10.9	4.5	2.4
	-15	37.5	17.8	2.1	11.1	4.1	2.7
	-10	41.4	15.3	2.7	11.4	3.7	3.1
	-7	44.2	16.2	2.7	11.9	3.6	3.3
35	2	48.0	15.8	3.0	11.8	2.7	4.3
	7	54.8	12.6	4.3	12.1	2.2	5.4
	10	58.9	12.9	4.6	12.4	2.1	5.9
	12	61.0	13.1	4.6	12.6	2.0	6.2
	15	61.6	13.0	4.7	12.6	2.0	6.4
	20	62.8	12.7	4.9	12.7	1.9	6.7
	-20 -19	31.2 33.6	18.5	1.7	10.6	5.3	2.0
	−18 −15	33.6 36.3	18.5 18.8	1.8 1.9	10.8 11.1	5.3 5.0	2.0 2.2
	-15 -10	30.3 40.6	17.9	2.3	11.7	4.5	2.2
	-10 -7	43.4	17.5	2.5	12.0	4.3	2.8
45	2	47.4	16.9	2.8	12.0	3.4	3.6
45	7	52.4	14.6	3.6	12.2	2.9	4.3
	10	57.5	14.6	3.9	12.7	2.7	4.7
	12	59.3	14.6	4.1	13.0	2.6	5.0
	15	60.3	14.5	4.1	13.0	2.5	5.2
	20	62.0	14.5	4.3	13.2	2.5	5.3
	-20	30.0	20.5	1.5	11.5	5.8	2.0
	-18	32.3	20.2	1.6	11.6	5.8	2.0
	-15	35.0	20.3	1.7	10.9	5.4	2.0
	-10	39.6	18.6	2.1	11.2	5.0	2.3
	-7	43.4	19.1	2.3	11.5	4.6	2.5
50	2	46.7	18.4	2.5	11.7	3.7	3.1
	7	51.3	16.4	3.1	12.0	3.2	3.7
	10	56.4	15.8	3.6	12.3	3.0	4.1
	12	58.5	15.8	3.7	12.4	2.9	4.3
	15	59.3	15.8	3.8	12.5	2.8	4.4
	20	61.2	15.6	3.9	12.6	2.8	4.5
	-20	29.0	21.9	1.3	11.1	6.6	1.7
	-18	30.9	21.8	1.4	11.2	6.6	1.7
	-15	33.7	21.8	1.5	11.5	6.2	1.9
	-10 -	38.6	19.2	2.0	11.6	5.4	2.2
	-7	42.4	20.2	2.1	11.8	5.1	2.3
55	2	45.9	19.9	2.3	11.9	4.2	2.9
	7	50.2	18.2	2.8	12.0	3.6	3.3
	10	55.2 57.7	17.1	3.2	12.8	3.4	3.7
	12	57.7	17.1	3.4	12.8	3.3	3.9
	15 20	58.3 60.4	17.0	3.4	13.0	3.2	4.0
	20	60.4	16.8	3.6	13.1	3.0	4.3

heating flow temperature (°C)
 source temperature (°C)
 heat output (kW), measured in accordance with standard EN 14511
 power consumption for the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Further performance data - heating see next page

Observe daily power interruptions! see "Engineering heat pumps general"

Belaria® pro (50) Data according to EN 14511

		Ма	ximum out	out	Mi	nimum outp	out
t _{v∟} °C	t _Q	\mathbf{Q}_{h}	Р	COP	$\mathbf{Q}_{_{\mathbf{h}}}$	P	COP
°C	°C	kW	kW		kW	kW	
	-20	27.9	23.9	1.2	10.8	7.1	1.5
	-18	29.5	23.9	1.2	10.9	7.1	1.5
	-15	32.4	23.4	1.4	11.2	6.7	1.7
	-10	37.7	21.9	1.7	11.5	6.0	1.9
	-7	41.4	21.4	1.9	11.6	5.6	2.1
60	2	45.2	21.5	2.1	11.3	4.8	2.3
	7	49.2	20.0	2.5	12.1	4.2	2.9
	10	54.1	18.4	2.9	12.4	3.8	3.2
	12	56.9	18.3	3.1	12.8	3.8	3.4
	15	57.3	18.2	3.1	12.8	3.7	3.5
	20	59.4	17.9	3.3	12.9	3.5	3.7
	-20	-	-	-	-	-	-
	-18	-	-	-	-	-	-
	-15	-	-	-	-	-	-
	-10	31.4	22.0	1.4	10.9	7.1	1.5
	-7	35.9	21.9	1.6	10.9	6.5	1.7
70	2	42.6	22.1	1.9	11.6	5.7	2.0
	7	49.0	22.2	2.2	12.1	5.2	2.3
	10	53.1	22.3	2.4	12.4	5.0	2.5
	12	56.0	22.2	2.5	12.8	4.9	2.6
	15	56.8	22.3	2.5	12.4	4.7	2.7
	20	58.0	21.8	2.7	12.6	4.5	2.8

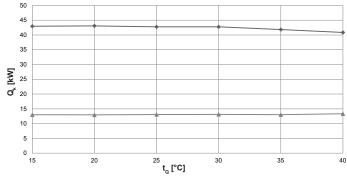
⁼ heating flow temperature (°C)

Observe daily power interruptions! see "Engineering heat pumps general"

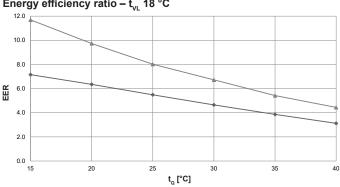
⁼ source temperature (°C) = heat output (kW), measured in accordance with standard EN 14511

P = power consumption for the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511


Performance data - cooling

Maximum cooling capacity


Belaria® pro (40)

Data according to EN 14511

Cooling capacity – t_{vL} 18 °C

Energy efficiency ratio – $t_{\rm VL}$ 18 °C

Maximum output

Minimum output

Belaria® pro (40)

Data according to EN 14511

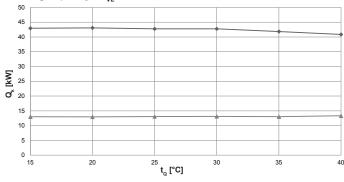
	9	Ma	ximum out	out	Mi	nimum outp	out
t _{∨∟} °C	t _o °C	Q _k kW	P kW	EER	Q _k kW	P kW	EER
	15	42.4	10.0	4.2	13.1	1.8	7.3
	20	43.0	12.6	3.4	13.3	2.3	5.8
7	25	41.4	13.9	3.0	13.1	2.7	4.8
/	30	40.2	14.7	2.7	12.9	3.7	3.5
	35	38.2	16.0	2.4	12.3	4.3	2.8
	40	33.3	16.2	2.1	11.4	5.4	2.1
	15	43.2	7.9	5.5	13.0	1.4	9.0
	20	42.8	8.9	4.8	13.1	1.7	7.5
40	25	42.9	10.5	4.1	13.3	2.2	6.2
12	30	43.1	12.9	3.3	13.4	2.7	5.1
	35	42.0	15.2	2.8	13.3	3.2	4.2
	40	38.6	17.0	2.3	12.4	3.6	3.4
	15	43.0	6.0	7.2	13.0	1.1	11.7
	20	43.1	6.8	6.4	13.0	1.3	9.7
40	25	42.8	7.8	5.5	13.1	1.6	8.0
18	30	42.8	9.2	4.6	13.1	2.0	6.7
	35	41.8	10.8	3.9	13.0	2.4	5.4
	40	40.9	13.1	3.1	13.3	3.0	4.4

= cooling water flow temperature (°C) = source temperature (°C)

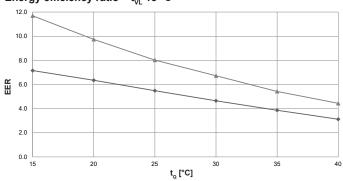
= cooling capacity (kW), measured in accordance with standard EN 14511 = power consumption for the overall unit (kW)

EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

Observe daily power interruptions! see "Engineering heat pumps general"


Performance data - cooling

Maximum cooling capacity


Belaria® pro (50)

Data according to EN 14511

Cooling capacity – $t_{\rm VL}$ 18 °C

Energy efficiency ratio – $t_{\rm VL}$ 18 °C

Maximum output

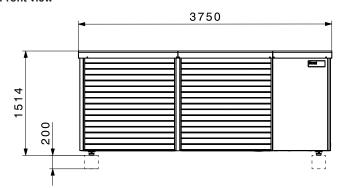
Minimum output

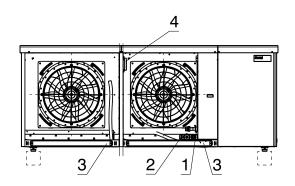
Belaria® pro (50)

Data according to EN 14511

		Ma	aximum outp	out	Mi	nimum outp	out
$\mathbf{t}_{_{\mathbf{VL}}}$	t _Q	$\mathbf{Q}_{_{\mathbf{k}}}$	Р	EER	Q_k	P	EER
°Č	°Č	kŴ	kW		kŴ	kW	
	15	42.4	10.0	4.2	13.1	1.8	7.3
	20	43.0	12.6	3.4	13.3	2.3	5.8
7	25	41.4	13.9	3.0	13.1	2.7	4.8
1	30	40.2	14.7	2.7	12.9	3.7	3.5
	35	38.2	16.0	2.4	12.3	4.3	2.8
	40	33.3	16.2	2.1	11.4	5.4	2.1
	15	43.2	7.9	5.5	13.0	1.4	9.0
	20	42.8	8.9	4.8	13.1	1.7	7.5
12	25	42.9	10.5	4.1	13.3	2.2	6.2
12	30	43.1	12.9	3.3	13.4	2.7	5.1
	35	42.0	15.2	2.8	13.3	3.2	4.2
	40	38.6	17.0	2.3	12.4	3.6	3.4
	15	43.0	6.0	7.2	13.0	1.1	11.7
	20	43.1	6.8	6.4	13.0	1.3	9.7
40	25	42.8	7.8	5.5	13.1	1.6	8.0
18	30	42.8	9.2	4.6	13.1	2.0	6.7
	35	41.8	10.8	3.9	13.0	2.4	5.4
	40	40.9	13.1	3.1	13.3	3.0	4.4

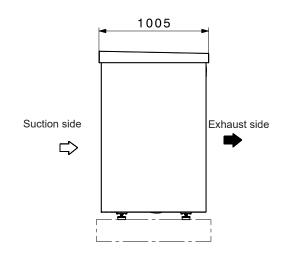
= cooling water flow temperature (°C) = source temperature (°C)

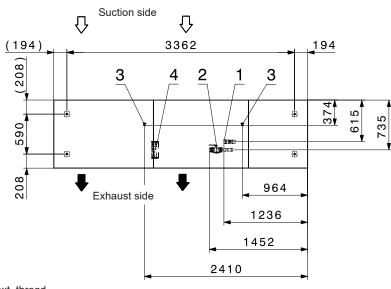

= cooling capacity (kW), measured in accordance with standard EN 14511 = power consumption for the overall unit (kW)


EER = Energy Efficiency Ratio for the overall unit in accordance with standard EN 14511

Observe daily power interruptions! see "Engineering heat pumps general"

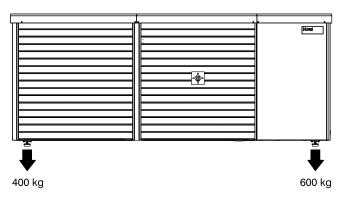
Belaria® pro Outdoor unit (Dimensions in mm)

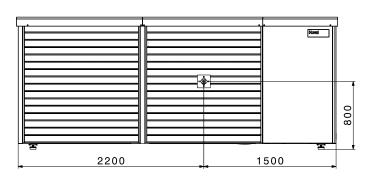

Front view



View from the left

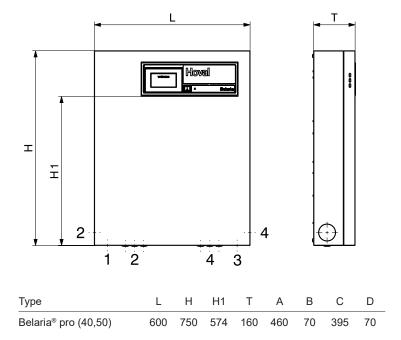
View from top

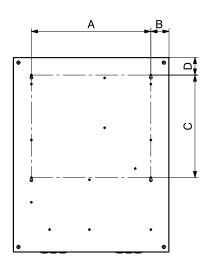




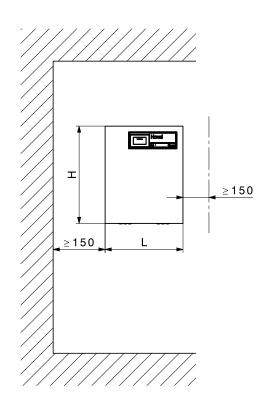
- Connection hydraulic connection line flow
- 2 Connection hydraulic connection line return
- Condensate drain 1 + 2
- Electrical connection

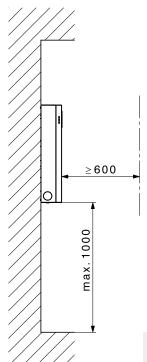
- 2" ext. thread
- 2" ext. thread 1"


Centre of gravity



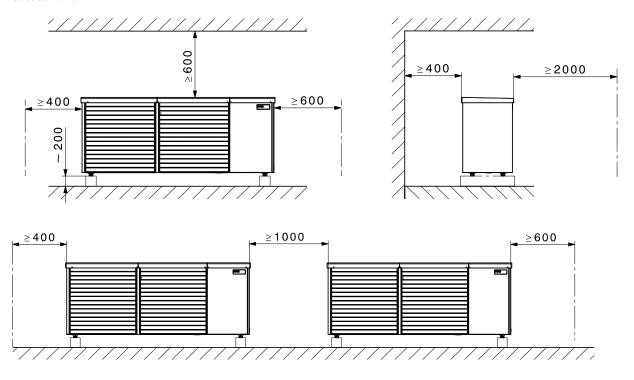
Belaria® pro (40,50)


Electrical box (Dimensions in mm)



- 1 Cable feed-in control current
- 2 Optional: Cable feed-in control current
- 3 Cable feed-in sensors, RS485
- 4 Optional: Cable feed-in sensors, RS485

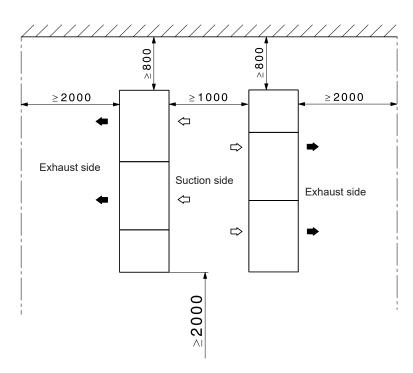
Belaria® pro (40,50) Electrical box



To ensure good operability and accessibility to the electrical/hydraulic connections, a clearance of max. 1000 mm must be provided from the ground to the lower edge of the electrical box.

Space requirement (Dimensions in mm)

Belaria® pro Outdoor unit

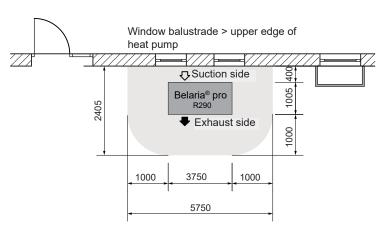


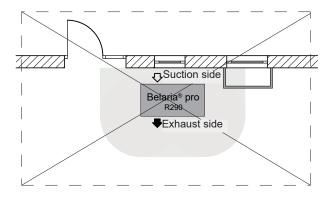
Any possible openings/recesses and ignition sources must be avoided within a radius of one meter around the outdoor unit.

In order to ensure accessibility during maintenance, a clearance of at least 600 mm upwards must be maintained.
For any service work, the minimum clearances at the rear and sides of the heat pump must be observed.

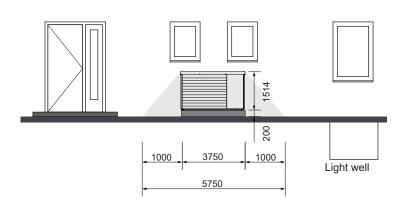
Belaria® pro Outdoor unit

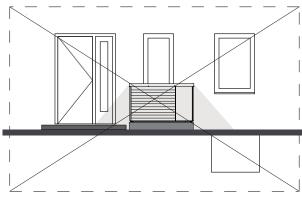
View from above

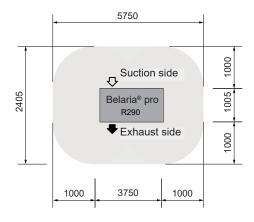


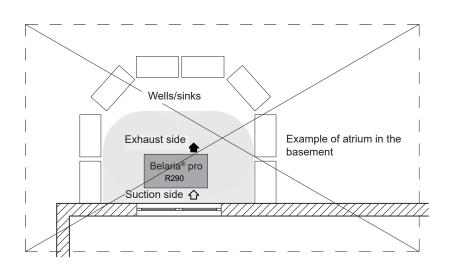


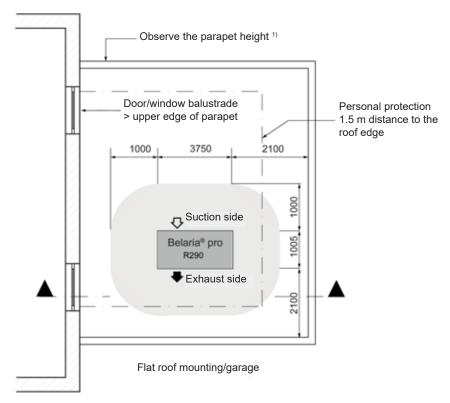
Presentation of protection areas


Belaria® pro (40,50) with refrigerant R290 (Dimensions in mm)

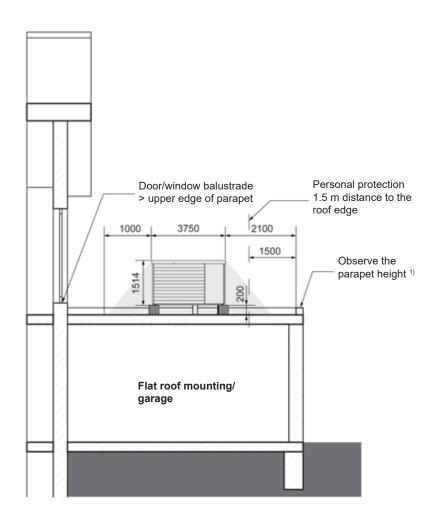

Floor plan - protection area when installed in front of a wall


View - protection area when installed in front of a wall




- The heat pump (outdoor unit) is only allowed to be placed outdoors and under no circumstances indoors.
- The outdoor unit is filled with the non-toxic, odourless and colourless but flammable refrigerant R290 (propane), which is heavier than air. If this occurs, there is a danger of fire/explosion. Therefore, all potential sources of ignition must be kept at least 1 m away in all directions. Smoking and the use of naked flames is prohibited in this area.
- Window balustrades must be higher than the upper edge of the outdoor unit in the protection area!
- The heat pump must be at least 1 m from the property boundary; observe building regulations!
- At the entrances to properties, it must be ensured that no vehicle can enter the protection area.
- To prevent the heat pump from being touched by vehicles, a collision guard must be installed if necessary. This must be located outside the protected area.

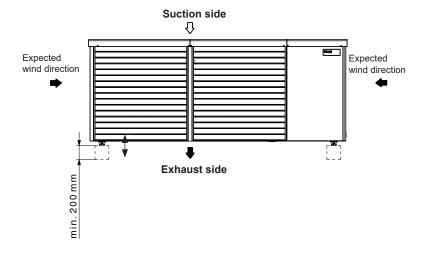
Floor plan - protection area when installed outdoors

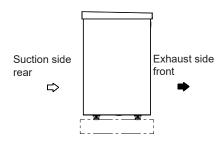


Floor plan flat roof - protection area

¹⁾ In case of flat roof installation, the parapet must not represent a potential sink in which refrigerant could accumulate. No ignitable mixture is allowed to form.

Section flat roof - protection area




- Strict compliance with safety measures regarding combustible refrigerants.
- All standards concerning statics, wind load and access to roofs must be complied with.
 The outdoor unit must be firmly bolted onto the substructure (e.g. concrete base). The heat pump must be prevented from tilting.
- Minimum distance of the heat pump to the roof edge: 1.5 m (personal protection) + 0.6 m (working area refrigeration circuit).
- Accessibility for maintenance and repair work must be ensured. For work on the heat pump, a measuring case and test equipment, refrigerant bottle, etc. must be transported to the site, amongst other things. In addition to the safety equipment (fall protection devices, anchoring devices, etc.), this must also be taken into account for skylights, stairs, railings, etc.
- There must be no floor-to-ceiling doors/ windows to the flat roof, or balustrade must be higher than the parapet.
- Protection areas around windows must be complied with.
- There must not be any pipe vents, skylights or the like on the flat roof within a radius of 1 m from the heat pump.
- If there is a risk of frost, a siphon must be installed in the shaft immediately before the condensate drain is introduced into the downpipe.
- Condensate drain into the sewage system via a frost-proof siphon or allow it to seep away freely.

Installation variants for Belaria® pro outdoor unit (Dimensions in mm)

Firm concrete base (1) on site

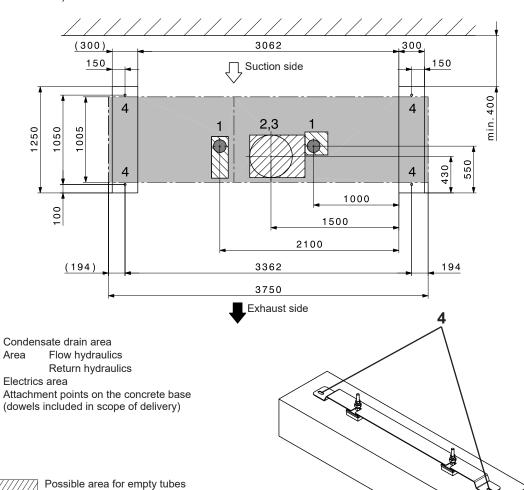
The base must not form a sink. A circumferential base is therefore not permitted.

Installation variants for Belaria® pro outdoor unit

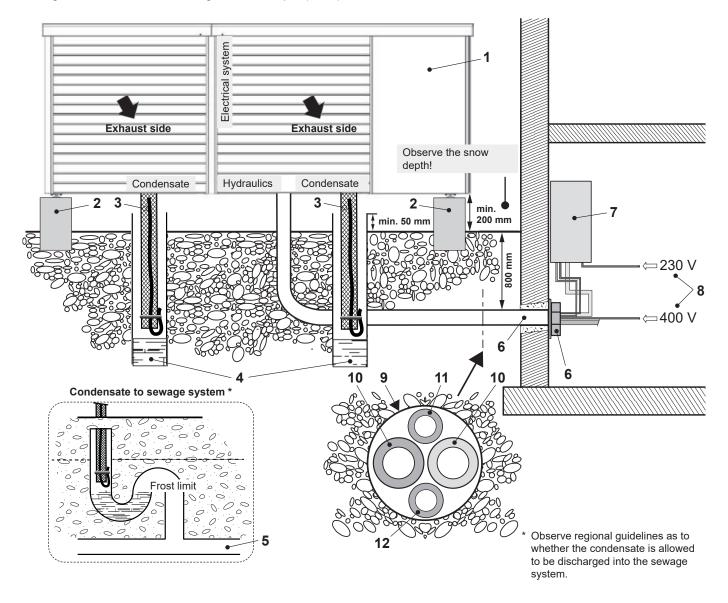
in the concrete base

in the concrete base

Possible area for condensate drain


(Dimensions in mm)

Strip foundation


2

3

Plan concrete base set (view from above)

Configuration and connection diagram Belaria® pro (40,50)

- Outdoor unit
- 2 Concrete base
- 3 Condensate drain Ø 28 mm
- 4 Variant 1: Seepage (duct/gravel layer)
- 5 Variant 2: Discharging into the sewage system (penetration into the soil must be made leak-tight)
- 6 Wall lead-through (hydraulic and electrical connections)
- 7 Electrical box

- 8 Main current: 3 x 400 V/50 Hz Control current: 1 x 230 V/50 Hz Data bus RS485
- 9 Empty tube for hydraulics and electrics
- 10 Connection line flow and return
- 11 Empty tube for electrical connections for outdoor unit
 Main current outdoor unit: 3 x 400 V/50 Hz
 Control current outdoor unit: 1 x 230 V/50 Hz
- 12 Empty tube for data bus RS485

Requirements and directives

The general requirements and directives listed in the chapter Engineering apply.

Set-up

- The distance between the outdoor unit and the buffer storage tank must be as short as possible. Only short and simple routing of lines guarantees cost effectiveness and low heat losses.
- The maximum permitted single cable length is 30 m between the outdoor unit and the buffer storage tank. This must not be exceeded.
 - In general, the customer must assess whether the next larger pipe dimension is more suitable due to the pressure drop.
- There must be no building openings (windows, doors, shafts, ventilation openings, etc.) within a radius of 1 m from the outdoor unit and no potential ignition sources must be present.
- · Wall ducts into the building must be airtight.
- The outdoor unit must not be placed in or near floor recesses.
- The outdoor unit must not be placed closer than 1 m to the boundary of the property.
 Country-specific regulations must be observed.
- The air intake and air outlet sides must not be narrowed or blocked. The air outlet side must be unobstructed (> 2 m).
- When using glycol (antifreeze) primary and/or secondary – a separating system must be used.
- Filling the entire system with glycol or a frost protection agent/water mixture is considered improper use and is not permitted. If this is nevertheless desired for frost protection reasons, the system must be designed with a system separation. Only environmental compatible frost protection agent is allowed to be used.

Outdoor unit

Important safety instruction

The heat pump (outdoor unit) is only allowed to be placed outdoors and under no circumstances indoors.

The outdoor unit is filled with the non-toxic, odourless and colourless but flammable refrigerant R290 (propane), which is heavier than air. If this occurs, there is a danger of fire/explosion. Therefore, all potential sources of ignition must be kept at least 1 m away in all directions. Smoking and the use of naked flames is prohibited in this area.

The outdoor unit is installed outdoors. The installation location must be selected carefully. It is essential that the following ancillary conditions are met:

- The maximum line length must not be exceeded.
- The connection lines must be laid insulated and frost-proof.
- The installation location must be chosen in such a way that no noise pollution can occur (do not install near bedrooms, keep a distance from neighbours), hedges and bushes can have a sound-absorbing effect.

- Unobstructed air inflow and outflow must be possible.
- It is imperative that the minimum distances are observed (see Dimensions/Space requirement).
- The intake air must be free of impurities such as sand and aggressive substances such as ammonia, sulphur, chlorine etc.
- The outdoor unit must be installed on a load-bearing fixed structure.
- If the unit is installed at wind-prone locations, the alignment of the heat pump must be selected in such a way that the expected wind direction is crossways to the suction direction of the outdoor unit.
- If an alternative installation in areas subject to strong winds cannot be avoided, an additional wind shield in the form of a hedge, for example, should be installed, or additional fastening should be provided for the outdoor unit.
- At exposed installation locations prone to wind load, e.g. on building roofs, the surface load on the upper horizontal cover surface of the heat pump caused by wind suction must not exceed a value of 2000 N/m². The heat pump casing might be damaged if this value is not complied with.
- The permitted surface load must be determined in accordance with the specifications of standard EN 1991-1-1. Compliance must be checked by a qualified specialist. A professional inspection of the actual conditions on site is mandatory and must be carried out by a qualified specialist.
- When planning and installing the heat pump in locations exposed to wind load, please contact your sales consultant in good time.
- Notice on installing the cover: If the cover of the heat pump has been removed, it must be properly reinstalled after the work has been completed. Make sure that the cover is fully connected to the heat pump using all the screw holes provided, to ensure stability and tightness
- If the installation location is not protected against snowfall, it must be chosen in such a way that the evaporator remains free of snow.
- The outdoor unit must always be installed on a solid surface in a horizontal position.
 This can be achieved by means of concrete bases or a floor plate.
- The load-bearing capability must be adequate. The unit must be fixed with 4 M12 screws.
- Air heat pumps generate condensate during operation. This can amount to 15 litres per evaporator unit per defrost cycle within 2 minutes for the outdoor unit of the Belaria® pro.
- The condensate drain must be frost-proof so that the condensate can flow away without problems even at outdoor temperatures below 0 °C.
- If the discharge is into the sewage system, a siphon must be provided and the duct lead-through into the ground must be sealed so that no refrigerant can enter the sewage system uncontrolled.

- If there is a risk of frost, a siphon must be installed in the shaft immediately before the condensate drain is introduced into the downpipe.
- The condensate drip trays integrated in the outdoor unit are already equipped with tray heating at the factory that thus prevents freezing.
- The condensate drain lines are also secured with the pre-installed heating tapes.
- The air outlet has increased susceptibility to frost. Gutters, water pipes and water containers must not be situated right next to the outlet.
- If installed near the coast, the location must be at least 5 km from the coastline. If this safe distance is not complied with, increased corrosion can be expected. These cases are excluded from the warranty.
- To prevent damage caused by animals such as rodents or insects, all cable ducts must be properly sealed.
- The hydraulic lines from the heat pump can transmit structure-borne noise. Therefore, structure-borne noise decoupling should be provided, e.g. with sound-insulating hoses.

A strainer is located in the outdoor unit. At least one sludge and magnetite separator must be installed in the heating return.

Flat roof installation

Flat roof installation of the Belaria® pro is possible under the following conditions:

- Strict compliance with safety measures regarding flammable refrigerants (see below).
- All standards concerning statics, wind load and access to roofs must be complied with. The outdoor unit must be firmly bolted onto the substructure (e.g. concrete base). The heat pump must be prevented from tilting.
- Minimum distance of the heat pump to the roof edge: 1.5 m (personal protection) + 0.6 m (working area refrigeration circuit).
- Accessibility for maintenance and repair
 work must be ensured. For work on the
 heat pump, a measuring case and test
 equipment, refrigerant bottle, etc. must
 be transported to the site, amongst other
 things. In addition to the safety equipment
 (fall protection devices, anchoring devices,
 etc.), this must also be taken into account for
 skylights, stairs, railings, etc.
- At exposed installation locations prone to wind load, e.g. on building roofs, the surface load on the upper horizontal cover surface of the heat pump caused by wind suction must not exceed a value of 2000 N/m². The heat pump casing might be damaged if this value is not complied with.
- The permitted surface load must be determined in accordance with the specifications of standard EN 1991-1-1. Compliance must be checked by a qualified specialist. A professional inspection of the actual conditions on site is mandatory and must be carried out by a qualified specialist.
- When planning and installing the heat pump in locations exposed to wind load, please contact your sales consultant in good time.

- Notice on installing the cover: If the cover of the heat pump has been removed, it must be properly reinstalled after the work has been completed. Make sure that the cover is fully connected to the heat pump using all the screw holes provided, to ensure stability and tightness.
- The heat pump contains electrically operated components and must be integrated in the structural lightning and surge protection for roof structures.

Safety measures to be complied with

- There must be no building openings (windows, doors, shafts, ventilation openings, etc.) within a radius of 1 m from the outdoor unit and no potential ignition sources must be present.
- Wall ducts into the building must be airtight.
- The outdoor unit must not be placed in or near floor recesses.
- The outdoor unit must not be placed closer than 1 m to the boundary of the property.
 Country-specific regulations must be observed.
- The air intake and air outlet sides must not be narrowed or blocked. The air outlet side must be unobstructed (> 2 m).
- The condensate is allowed to be directed into a shaft. A siphon must be installed upstream of the connection to the downpipe. The siphon must be located inside the building.

Electrical box

- The installation location must be selected in accordance with the valid requirements and directives.
- The electrical box must be installed in a room protected against frost, by an approved specialist company. Room temperature must be between 5 °C and 25 °C.
- Installation in wet rooms, dusty rooms or rooms with a potentially explosive atmosphere is not permitted.
- The electrical connections can be introduced from the bottom with the electrical box of the Belaria[®] pro.
- To ensure accessibility to the electrical box, the distances must be maintained on all sides (see Dimensions/Space requirement).

Electrical connections

- The electrical connection must be carried out by a qualified technician and registered with the responsible energy supply company.
 The relevant electrical installation company is responsible for ensuring that electrical connection is carried out in accordance with standards and that safeguard measures are put in place.
- The mains voltage at the connection terminals of the heat pump must be 400 V or 230 V ± 10 %. The connection lines specified in the technical data must be checked by the electrical company carrying out the work depending on the line length, the routing type and the type of line.

- A fault-current circuit breaker is recommended. Country-specific requirements must be complied with. If the "fault-current circuit breaker" safeguard measure is implemented by the electrical company, a separate fault-current circuit breaker is recommended for the heat pump.
- This fault-current circuit breaker must be of the all-current-sensitive type B (IΔN ≥ 300 mA). The specified RCCB types apply to the heat pump regardless of externally connected components (refer to assembly instructions, data sheets).
- Owing to the starting currents that occur, circuit breakers with a type "C" or "K" tripping characteristic are to be used for the main circuit.
- For the control circuit and additional electric heating (if present), circuit breakers with a type "B" or "Z" tripping characteristic are sufficient.
- The electrical connection and feeder lines must be copper cables.
- Please refer to the circuit diagrams for electrical details.
- The wall feedthrough should slope down from the inside to the outside.
- To avoid damage, the opening should be padded on the inside or, for example, lined with a PVC pipe.
- After installation, the wall opening must be sealed with a suitable sealing compound on site, observing the fire protection regulations.

Routing of the hydraulic connection lines

- If the hydraulic connection lines are laid in the ground, this must be done in a protective tube. For example, this can be a PVC pipe with a diameter of 350 mm.
- Wall ducts must be sealed to the outside on site.
- After the hydraulic connection lines have been laid, they must be checked for damage and reinsulated. In case of cooling, condensate can form on the pipes.
- The hydraulic connection lines must be laid decoupled from the building and must never be laid flush-mounted.
- Care must be taken to ensure that water pipes do not pass through the sleeping or living areas.
- Shut-off valves must be installed on site in accordance with the corresponding hydraulic diagram. The shut-off valves are not allowed to be opened until immediately before commissioning.
- The danger of frost damage must be taken into account if there are prolonged power outages.
- False flow rates as a result of incorrect dimensions of the pipework, incorrect fittings or improper pump operation can cause damage to the heat pump.

Room cooling

- Room cooling can be provided by fan convectors and is recommended. The connection lines for the fan convectors must have condensation-proof insulation. In addition, the condensate from the fan convectors must be drained off.
- If panel heating is used for room cooling, various criteria such as temperatures below the dewpoint or the temperature profiles must be allowed for, and can lead to costly consequential damage in the case of inadequate planning or incorrect use.
 We recommend that you consult Hoval.

Further guidelines

see "Engineering"

Connection on drinking water side

- The hydraulic connection is made according to the information in the corresponding diagrams from Hoval.
- According to the Drinking Water Regulation and DIN 50930-6, the domestic hot water storage tank is suitable for normal drinking water (pH value > 7.3).
- The connection piping can be made using galvanised pipes, stainless steel pipes, copper pipes or plastic pipes.
- The connections must be made pressuretight.
- The safety devices tested for the components in accordance with DIN 1988 and DIN 4753 must be installed in the cold water pipe.
- The 10 bar operating pressure stated on the data plate is not allowed to be exceeded. Install a pressure reducing valve if necessary.
- A suitable water filter must be installed in the cold water pipe.
- A water softener must be installed if the water is hard

Installation on heating side

- All pertinent laws, regulations and standards for heating house pipework and for heat pump systems must be complied with.
- A strainer is located in the outdoor unit. At least one sludge and magnetite separator must be installed in the heating return.
- The safety and expansion devices for closed heating systems must be provided in accordance with EN 12828.
- Dimensioning of the pipework must be done according to the required flow rates and given pressure drops.
- Ventilation possibilities must be provided at the highest points and drainage possibilities at the lowest points of the connection lines.
- To prevent energy losses, the connection lines must be insulated with suitable material in accordance with local regulations.

Transport and storage

- When removing the packaging, check the outdoor unit for damage. If the outdoor unit was damaged during transport or storage, contact Hoval customer service, a service partner or a licensed specialist immediately. They must carry out a leak test with a suitable leak detector. In the event of a leak, the outdoor unit must be repaired.
- Store the outdoor unit in a cool place without fire hazard and without direct exposure to heat sources. The ambient temperature must not exceed 43 °C.
- The same regulations apply for storage as for installation (no recesses, ventilation pipes, ignition sources in the storage area).
- The outdoor unit must not be stored in closed rooms, cellars or garages.
- The outdoor unit is only allowed to be stored outdoors.
- During transport, ensure sufficient ventilation in the closed vehicle, also when parking and stopping.
- Storage in passageways, escape routes or in front of entrances or exits is not permitted.
- Ignition sources such as naked flames, switched-on gas appliances, electric heaters, etc. must be kept away from the unit.
- Transport and storage only in upright position. Protect from mechanical damage and from falling over or falling down (make sure the load is secure).
- To prevent damage during transport, the outdoor unit should be moved to its final installation location as far as possible in packed state on the wooden pallet with a forklift or lift truck.
- Transport by crane: The outdoor unit can be lifted by a crane and transported to the installation site. For this purpose, there are three crane hooks below the cover with openings for the passage of the transport straps.

Prerequisites for commissioning

- Commissioning at cold outdoor temperatures is only possible if the system is preheated on site (e.g. with an electric bake-out device). During commissioning, the room temperature of the heated rooms must be at least 15 °C (compressor operation is not possible below this temperature, as there would be too little energy for defrosting). If a buffer storage tank is provided, its heating water temperature is not allowed to be less than 20 °C during commissioning.
- A heat pump should not be used for drying out of the building (screed heating), as this can significantly reduce the service life of the device. Alternatively, heating via a mobile heating station or E-set is a sensible option. This is particularly true for air/water heat pumps, since the heating output here is strongly dependent on the outdoor temperature and drying out of the building is not possible at temperatures below the frost line in the building carcass.

Looking for the appropriate hydraulic schematic? Please contact your local Hoval partner.

District Heating

Operational reliability for local and district heating networks

Systems in which heat is supplied from a central location and then distributed via local or district heating networks are being used more and more often in large residential, commercial, administrative and municipal buildings, as well as by other consumers with high heat demands.

Heat transfer stations play a crucial role in such systems, as efficient and reliable distributors of heat. Hoval heat transfer stations fulfil this task at the highest possible level, due to the materials used in them and their sophisticated yet compact design.

Hoval offers a range of heat transfer stations, covering different power outputs suitable for everything from single-family homes right up to large high-energy buildings. Hoval's district heating portfolio includes:

- TransTherm® Pro S/RS
- TransTherm[®] Giro
- TransShare

Hoval TransTherm® pro S

District heating transfer station

- Indirect compact station for heat transfer and regulation of heating and hot water production systems.
- Standard design for heating water in accordance with DIN and AGFW directives. District heating primary:
 - Maximum pressure stage 16/25 bar
 - Maximum operating temperature 110-150 °C
 - Maximum flow rate 62 m³/h
 - Connection at the top

Secondary heating:

- maximum operating pressure 3 bar
- Maximum operating temperature 110 °C
- Maximum flow rate 88 m³/h
- Connection at the top

Installed

District heating primary:

- 1 flow rate controller with motorised valve, actuator
 - without emergency control function (110 °C) (types F and G, sequential circuit with 2 valves)
 - with emergency control function (140, 150 °C) (types F and G, sequential circuit with 2 valves)
- 1 heat meter adapter
- 1 return temperature sensor
- 1 flow temperature sensor
- 2 thermometers
- 1 strainer
- 1 drain

Secondary heating:

- Stainless steel plate heat exchanger in soldered design
- Ball stop valves or shut-off dampers
- 1 Return temperature sensor
- 1 flow temperature sensor
- 1 safety temperature monitor (140, 150 °C)
- 2 thermometers
- 1 safety valve 3 bar (membrane-sv)
- 1 pressure gauge
- 1 strainer
- 1 drain
- 1 connection for diaphragm pressure expansion tank
- · District heating station in fully welded and thermally insulated design (50 % thermally insulated, EPP), mounted vibration-free on a steel frame structure and provided with special corrosion protection
- Partial enclosure with powder-coated sheet steel, colour red (RAL 3011)
- Control panel integrated in partial enclosure with
- TopTronic® E controller
- Terminals for electrical power supply
- Circuit breaker
- Neutral conductor terminal block

TransTherm® pro S

TransTherm® pro RS

Series TransTherm® pro S type	Size	Hydraulics	Number of plates (heat exchanger)	റ് Max. flow temperature	g Nominal pressure	중 Heat output ⑴
(A/H0/N36/T110/P16)	Α	0	36	110	16	149
(A/H0/N36/T140/P16)	A	0	36	140	16	149
(A/H0/N36/T150/P25)	A		36	150	25	149
(B/H0/N50/T110/P16)	В	0	50	110	16	195
(B/H0/N50/T140/P16)	B	0	50	140	16	195
(B/H0/N50/T150/P25)	B		50	150	25	195
(C/H0/N60/T110/P16)	ССС	0	60	110	16	241
(C/H0/N60/T140/P16)		0	60	140	16	241
(C/H0/N60/T150/P25)		0	60	150	25	241
(D/H0/N100/T110/P16)		0	100	110	16	402
(D/H0/N100/T140/P16)		0	100	140	16	402
(D/H0/N100/T150/P25)		0	100	150	25	402

Hydraulics	Number of plates (hea exchanger)		ឆ្ន y Nominal pressure	≅ Heat output ¹)
-	140	110	16	460
	140 140			460 460
0	200	110	16	575
-				575 575
0	180	110	16	915 915
	180			915
0	200	110 140 150		1417 1417 1417
	00 000 000 Hydraulics	Hydraulics	Hydraulics	°C bar 0 140 110 16 0 140 140 16 0 140 150 25 0 200 110 16 0 200 140 16 0 200 150 25 0 180 110 16 0 180 140 16 0 180 150 25 0 200 110 16 0 200 110 16 0 200 140 16

Types F and G, sequential circuit with 2 valves 1) Reference temperature primary 90-52 °C/ secondary 70-50 °C

Hoval TransTherm® pro RS

- Design same as Hoval TransTherm® pro S but with completely removable sheet steel enclosure (housing type RS)
- For this version, it is necessary to order the standard Hoval TransTherm® pro S design and, in addition, the housing type RS.

TopTronic® E controller

TopTronic® E control panel

- · Colour touchscreen 4.3 inch
- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module district heating com (TTE-FW com)

Control functions integrated for

- primary valve control
- cascade management
- 1 heating circuit with mixer
- 1 heating circuit without mixer
- 1 hot water charging circuit
- various additional functions
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Complete plug set for DH module

Options for TopTronic® E controller

- Can be expanded by max.
- 5 module expansions:
- module expansion heating circuit DH
- module expansion hot water DH
- module expansion universal DH
- Can be optionally expanded with various accessories:
 - Ethernet connection TTE-FW com
 - repeater TTE-FW com LON-Bus
 - router TTE-FW com Ethernet on LON-Bus
 - data socket 13-pin TTE-FW com LON-Bus and lighting protection
 - various software licences for HovalSupervisor
 - various services for HovalSupervisor
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module
 - e.g. max 45 mixer circuits

Number of modules that can be additionally installed in the control panel:

5 module expansions

Further information about the TopTronic® E see "Controls"

Design on request

- Flow rate controller with motorised valve, actuator with emergency control function
- Supply of system components such as heat meter, heating armature group, calorifier, charging group etc.
- Hoval control system
- · District heating station for direct connection

Deliverv

- District heating transfer station already mounted on steel frame structure and ready for electrical connection.
 - TransTherm® pro S with partial enclosure
 - TransTherm® pro RS with complete enclosure

On site

· Installation of heat meter

District heating primary

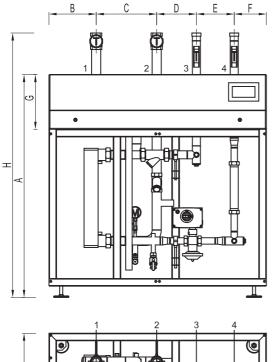
TransTherm® pro S/RS	Connection size	V max.	Nominal pressure max.	T-max.	Valve type	Valve nominal width	Valve	Closing pressure 1)	Valve V max.	Valve actuator
type	DN	m³/h	bar	°C	Danfoss	DN	kvs	bar		type
(A/H0/N36/T110/P16)	32	3.5	16	110	AVQM	25	8	12	3.5	AMV10
(A/H0/N36/T140/P16)	32	3.5	16	140	AVQM	25	8	12	3.5	AMV13
(A/H0/N36/T150/P25)	32	3.5	25	150	AVQM	25	8	20	3.5	AMV13
(B/H0/N50/T110/P16)	40	6.5	16	110	AVQM	32	12.5	20	8	AMV20
(B/H0/N50/T140/P16)	40	6.5	16	140	AVQM	32	12.5	20	8	AMV23
(B/H0/N50/T150/P25)	40	6.5	25	150	AVQM	32	12.5	20	8	AMV23
(C/H0/N60/T110/P16)	40	6.5	16	110	AVQM	32	12.5	20	8	AMV20
(C/H0/N60/T140/P16)	40	6.5	16	140	AVQM	32	12.5	20	8	AMV23
(C/H0/N60/T150/P25)	40	6.5	25	150	AVQM	32	12.5	20	8	AMV23
(D/H0/N100/T110/P16)	50	10	16	110	AVQM	40	16	20	10	AMV20
(D/H0/N100/T140/P16)	50	10	16	140	AVQM	40	16	20	10	AMV23
(D/H0/N100/T150/P25)	50	10	25	150	AVQM	40	16	20	10	AMV23
(E/H0/N140/T110/P16)	65	12	16	110	AVQM	50	20	20	12.5	AMV20
(E/H0/N140/T140/P16)	65	12	16	140	AVQM	50	20	20	12.5	AMV23
(E/H0/N140/T150/P25)	65	12	25	150	AVQM	50	20	20	12.5	AMV23
(F/H0/N200/T110/P16)	65	16	16	110	2 x AVQM	40	16	20	20	2 x AMV20
(F/H0/N200/T140/P16)	65	16	16	140	2 x AVQM	40	16	20	20	2 x AMV23
(F/H0/N200/T150/P25)	65	16	25	150	2 x AVQM	40	16	20	20	2 x AMV23
(G/H0/N180/T110/P16)	80	25	16	110	2 x AVQM	50	20	20	25	2 x AMV20
(G/H0/N180/T140/P16)	80	25	16	140	2 x AVQM	50	20	20	25	2 x AMV23
(G/H0/N180/T150/P25)	80	25	25	150	2 x AVQM	50	20	20	25	2 x AMV23
(H/H0/N200/T110/P16)	100	40	16	110	AFQM	80	80	16	40	AMV55
(H/H0/N200/T140/P16)	100	40	16	140	AFQM	80	80	20	40	AME659
(H/H0/N200/T150/P25)	100	40	25	150	AFQM	80	80	20	40	AME659

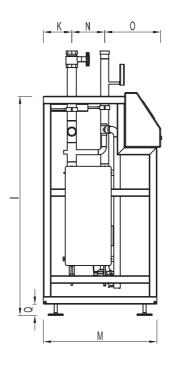
¹⁾ Actuator valve

Secondary heating

TransTherm [®] pro S/RS	Connection size	Maximum flow rate	Operating pressure max.	T-max.	Safety function
type	DN	m³/h	bar	°C	1411041011
(A/H0/N36/T110/P16)	40	6.5	3 ¹⁾	110	without
(A/H0/N36/T140/P16)	40	6.5	3 ¹⁾	110	STW
(A/H0/N36/T150/P25)	40	6.5	3 ¹⁾	110	STW
(B/H0/N50/T110/P16)	50	8.5	3 ¹⁾	110	without
(B/H0/N50/T140/P16)	50	8.5	3 ¹⁾	110	STW
(B/H0/N50/T150/P25)	50	8.5	3 ¹⁾	110	STW
(C/H0/N60/T110/P16)	50	10.5	3 ¹⁾	110	without
(C/H0/N60/T140/P16)	50	10.5	3 ¹⁾	110	STW
(C/H0/N60/T150/P25)	50	10.5	3 ¹⁾	110	STW
(D/H0/N100/T110/P16)	65	17.5	3 ¹⁾	110	without
(D/H0/N100/T140/P16)	65	17.5	3 ¹⁾	110	STW
(D/H0/N100/T150/P25)	65	17.5	3 ¹⁾	110	STW
(E/H0/N140/T110/P16)	80	25	3 ¹⁾	110	without
(E/H0/N140/T140/P16)	80	25	3 ¹⁾	110	STW
(E/H0/N140/T150/P25)	80	25	3 ¹⁾	110	STW
(F/H0/N200/T110/P16)	80	25	3 ¹⁾	110	without
(F/H0/N200/T140/P16)	80	25	3 ¹⁾	110	STW
(F/H0/N200/T150/P25)	80	25	3 ¹⁾	110	STW
(G/H0/N180/T110/P16)	100	40	3 ¹⁾	110	without
(G/H0/N180/T140/P16)	100	40	3 ¹⁾	110	STW
(G/H0/N180/T150/P25)	100	40	3 ¹⁾	110	STW
(H/H0/N200/T110/P16)	125	60	3 ¹⁾	110	without
(H/H0/N200/T140/P16)	125	60	3 ¹⁾	110	STW
(H/H0/N200/T150/P25)	125	60	3 ¹⁾	110	STW

¹⁾ STW = safety temperature monitor

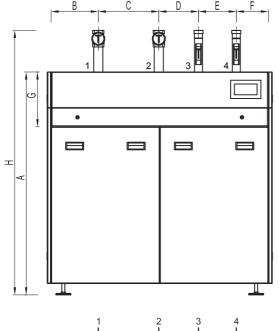

Perform	ance data								ı	District	heatin	g						
							°C	_							°C			
Trans Th	erm pro S/RS		36)	50)	30)	100.	140)	200)	180	200	36)	50)	90)	100	140)	200)	180	200.
Heating secondar	ry		(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)	(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)
85/60 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - -	-	- - - -	-		- - -	-	- - - -	-	- - -	- - - -	- - -	- - -	- - -	- - -	- - - -
80/60 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	-	- - -	- - -	- - -	- - -	- - -	- - -	- - - -
80/65 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - -	- - - -	- - - -	- - -	- - -	- - -	- - -	- - -	-	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -
75/50 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - - -	- - - -	- - - -	- - -	- - -	- - -	- - -	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -
70/50 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	53 3.5 87 3.7	53 6.5 161 7.0	53 6.5 161 7.0	53 10.0 248 10.8	53 12.1 298 12.9	53 16.0 397 17.2	58 25.0 469 20.5	54 40.0 941 41.2
70/55 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	57 3.5 71 4.1	57 6.5 131 7.6	57 6.5 131 7.6	57 10.0 206 12.0	57 12.4 248 14.4	57 16.0 323 18.7	60 25.0 404 23.5	57 40.0 788 46.0
65/40 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	45 3.5 99 3.4	45 6.5 184 6.3	45 6.5 184 6.3	45 10.0 288 10.0	45 12.0 346 12.0	45 16.0 454 15.7	51 25.0 523 18.2	46 40.0 1077 37.5	43 3.5 128 4.4	43 6.6 237 8.2	43 6.6 237 8.2	43 10.0 364 12.6	43 12.2 437 15.1	43 16.0 583 20.2	49 25.0 724 25.2	44 40.0 1396 48.7
60/40 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	42 3.5 111 4.8	42 6.2 196 8.5	43 6.5 202 8.7	43 10.0 311 13.5	43 12.0 374 16.2	43 16.0 498 21.6	47 25.0 648 28.2	42 40.0 1228 53.4	42 3.5 133 5.7	42 5.2 196 8.5	42 6.4 242 10.5	42 10.0 381 16.5	42 12.2 457 19.8	42 15.4 576 25.0	46 25.0 816 35.5	42 36.8 1377 60.0
60/45 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	47 3.5 93 5.3	47 5.6 147 8.5	47 6.5 172 9.9	47 10.0 265 15.3	47 12.0 318 18.4	47 16.0 424 24.5	49 25.0 573 33.3	46 39.0 1032 60.0	47 3.5 113 6.5	47 4.6 147 8.5	47 5.7 181 10.5	47 9.5 302 17.5	47 10.8 345 20.0	47 13.6 432 25.0	49 25.0 733 40.0	45 31.3 1032 60.0
55/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	33 3.5 150 5.1	33 5.8 246 8.5	33 6.6 278 9.6	33 10.0 428 14.8	33 12.0 513 17.7	33 16.0 684 23.6	38 25.0 885 30.7	33 41.8 1726 60.0	32 3.5 172 5.9	32 5.0 246 8.5	32 6.2 303 10.5	32 10.0 492 17.0	32 11.9 578 20.0	32 15.0 722 25.0	37 25.0 1049 36.4	32 35.9 1726 60.0
50/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	32 3.4 150 6.5	32 4.5 196 8.5	32 5.6 243 10.5	32 9.3 404 17.5	32 10.7 462 20.0	32 13.3 578 25.0	36 25.0 921 40.0	31.0 1382 60.0	32 3.0 150 6.5	32 4.0 196 8.5	32 4.9 243 10.5	32 8.3 404 17.5	32 9.4 462 20.0	32 11.9 578 25.0	34 20.2 321 40.0	31 27.7 1382 60.0
50/35 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	37 3.0 112 6.5	37 3.9 147 8.5	37 4.8 182 10.5	37 8.0 303 17.5	37 9.2 346 20.0	37 11.5 433 25.0	35 23.7 921 40.0	35 26.0 1036 60.0	37 2.6 112 6.5	37 3.4 147 8.5	37 4.2 182 10.5	37 7.0 303 17.5	37 8.0 346 20.0	37 10.1 433 25.0	37 16.2 690 40.0	35 23.1 1036 60.0
45/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	32 2.6 113 6.5	32 3.4 147 8.5	32 4.2 182 10.5	32 7.0 303 17.5	32 8.0 347 20.0	32 10.0 433 25.0	32 16.3 691 40.0	30 23.1 1037 60.0	32 2.3 113 6.5	32 3.0 147 8.5	32 3.7 182 10.5	32 6.2 303 17.5	32 7.1 347 20.0	32 8.9 433 25.0	32 14.2 691 40.0	30 20.5 1037 60.0
45/35 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	37 2.0 75 6.5	37 2.6 98 8.5	37 3.2 121 10.5	37 5.3 202 17.5	37 6.1 231 20.0	37 7.6 288 25.0	35 11.9 460 40.0	35 17.4 691 60.0	37 1.7 75 6.5	37 2.2 98 8.5	37 2.8 121 10.5	37 4.6 202 17.5	37 5.3 231 20.0	37 6.7 288 25.0	35 10.3 460 40.0	35 15.2 691 60.0

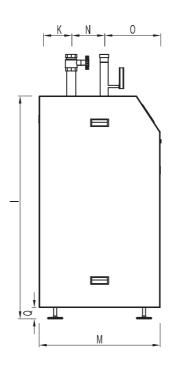

										District	heatin	a						
						80	°C					<u> </u>		85	o°C			
Trans Th	erm pro S/RS		(-:)	(:.0	())	00)	40)	00)	80)	(-:00	(-:)	(::0	())	00)	40)	00)	80)	(00
Heating seconda	ry		(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)	(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)
			₹	(B)	<u>5</u>	<u>Q</u>	E/I	E)	9	Ē	_₹	(B)	<u>5</u>	<u>Q</u>	Ē	(F)	9	_₹
85/60 °C	T return primary V primary	°C m³/h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Q max.	kW	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	V secondary	m³/h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
80/60 °C	T return primary V primary	°C m³/h	-	-	-	-	-	-	-	-	64 3.5	64 6.5	64 6.5	64 10.0	64 12.0	64 16.0	68 25.0	67 40.0
	Q max. V secondary	kW m³/h	-	-	-	-	-	-	-	-	84 3.6	156 6.8	156 6.8	240 10.5	289 12.6	385 16.8	478 21.0	828 36.4
80/65 °C		°C								_	67	67	67	67	67	67	71	70
00,00	V primary	m³/h	-	-	-	-	-	-	-	-	3.5	6.5	6.5	10.0	12.0	16.0	25.0	40.0
	Q max. V secondary	kW m³/h	-	-	-	-	-	-	-	-	72 4.2	134 7.8	134 7.8	206 12.0	247 14.4	329 19.2	410 24.1	705 41.4
75/50 °C	T return primary	°C	55	55	55	55	55	55	61	60	53	53	53	53	53	53	59	58
	V primary Q max.	m³/h kW	3.5 101	6.6 187	6.6 187	10.0 287	12.0 345	16.0 460	25.0 536	40.0 931	3.5 129	6.6 239	6.6 239	10.0 368	12.0 441	16.0 589	25.0 737	40.0 1258
-	V secondary	m³/h	3.5	6.5	6.5	10.0	12.0	16.0	18.8	32.6	4.4	8.3	8.3	12.8	15.3	20.4	25.8	44.1
70/50 °C	T return primary V primary	°C m³/h	52 3.5	52 6.1	53 6.6	53 10.0	53 12.0	53 16.0	57 25.0	56 40.0	52 3.5	52 5.2	52 6.4	52 10.0	52 12.0	52 15.4	56 25.0	55 40.0
	Q max.	kW	113	195	205	316	379	506	659	1118	133	195	241	379	455	575	825	1385
	V secondary	m³/h	4.9	8.5	8.9	13.7	16.5	22.0	28.8	48.9	5.7	8.5	10.5	16.5	19.8	25.0	36.1	60.6
70/55 °C	T return primary V primary	°C m³/h	57 3.5	57 5.6	57 6.5	57 10.0	57 12.0	57 16.0	60 25.0	59 40.0	57 3.5	57 4.6	57 5.7	57 9.5	57 10.8	57 13.6	59 23.0	58 34.1
	Q max. V secondary	kW m³/h	92 5.3	146 8.5	171 9.9	264 15.3	317 18.4	422 24.5	580 33.9	978 57.1	112 6.5	146 8.5	181 10.5	301 17.5	344 20.0	430 25.0	685 40.0	1062 62.0
65/40 °C	T return primary	°C	43	43	43	43	43	43	49	47	42	42	42	42	42	42	48	46
00/10	V primary	m³/h	3.5	5.8	6.6	10.0	12.0	16.0	25.0	40.0	3.5	5.0	6.2	10.0	11.9	14.9	25.0	39.9
	Q max. V secondary	kW m³/h	149 5.1	245 8.5	277 9.6	427 14.8	512 17.7	683 23.6	900 31.4	1519 53.0	174 6.0	245 8.5	303 10.5	496 17.2	577 20.0	721 25.0	1062 37.1	1777 62.0
60/40 °C		°C	42	42	42	42	42	42	46	43.7	42	42	42	42	42	42	45	43
	V primary Q max.	m³/h kW	3.4 150	4.5 196	5.6 242	9.3 404	10.7 461	13.4 576	23.4 918	34.7 1423	3.0 150	4.0 196	5.0 242	8.3 404	9.5 461	11.9 576	20.0 918	30.0 1423
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0
60/45 °C	T return primary V primary	°C m³/h	47 3.0	47 3.9	47 4.8	47 8.1	47 9.2	47 11.6	48 18.9	47 28.5	47 2.6	47 3.4	47 4.2	47 7.0	47 8.0	47 10.1	48 16.1	47 24.5
	Q max.	kW	112	147	181	302	345	432	688	1066	112	147	181	302	345	432	688	1066
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0
55/30 °C	T return primary V primary	°C m³/h	32 3.4	32 4.5	32 5.5	32 9.3	32 10.6	32 13.3	37 23.7	31 32.8	32 3.1	32 4.1	32 5.0	32 8.4	32 9.6	32 12.1	35 20.8	31 29.5
	Q max. V secondary	kW m³/h	188 6.5	246 8.5	303 10.5	506 17.5	578 20.0	722 25.0	1151 40.0	1784 62.0	188 6.5	246 8.5	303 10.5	506 17.5	578 20.0	722 25.0	1151 40.0	1784 62.0
50/30 °C	T return primary	°C	32	32	32	32	32	32	33	30	32	32	32	32	32	32	35	30
	V primary	m³/h	2.7	3.6	4.4	7.4	8.5	10.7	17.6	25.6	2.5	3.2	4.0	6.7	7.7	9.7	20.7	23.0
	Q max. V secondary	kW m³/h	150 6.5	196 8.5	243 10.5	404 17.5	462 20.0	578 25.0	921 40.0	1428 62.0	150 6.5	196 8.5	243 10.5	404 17.5	462 20.0	578 25.0	1151 40.0	1428 62.0
50/35 °C	T return primary	°C	37	37	37	37	37	37	37	35	37	37	37	37	37	37	36	35
	V primary Q max.	m³/h kW	2.3 112	3.0 147	3.7 182	6.2 303	7.1 346	8.9 433	14.2 690	21.1 1070	2.0 112	2.7 147	3.3 182	5.6 303	6.4 346	8.0 433	12.6 690	19.0 1070
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0
45/30 °C	T return primary V primary	°C m³/h	32 2.0	32 2.7	32 3.3	32 5.5	32 6.3	32 8.0	31 12.6	30 19.1	32 1.8	32 2.4	32 3.0	32 5.0	32 5.8	32 7.3	31 11.4	30 17.4
	Q max.	kW	113	147	182	303	347	433	691	1072	113	147	182	302	347	433	691	1072
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0
45/35 °C	T return primary V primary	°C m³/h	37 1.5	37 2.0	37 2.4	37 4.1	37 4.7	37 5.9	35 9.1	35 14.0	37 1.3	37 1.8	37 2.2	37 3.7	37 4.2	37 5.3	35 8.2	35 12.6
	Q max.	kW	75	98	121	202	231	288	460	714	75	98	121	202	231	288	460	714
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0

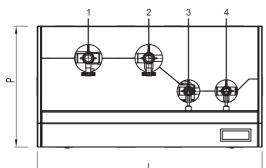
									ı	District	heating	g						
Trans Th	erm pro S/RS						°C	~	÷	$\overline{\cdot}$						~	÷	$\overline{}$
Heating	eriii pro 3/K3		136)	150)	(::091	1100.	140.	200.	1180.	1200.	136)	150)	160)	1100.	140.	200.	1180.	1200.
seconda	ry		(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)	(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)
85/60 °C	T return primary V primary	°C m³/h	65 3.5	65 6.6	65 6.6	65 10.0	65 12.0	65 16.0	71 25.0	67 40.0	63 3.5	63 6.6	63 6.6	63 10.0	63 12.0	63 16.3	69 25.0	67 40.0
	Q max. V secondary	kW m³/h	100 3.5	186 6.5	186 6.5	286 10.0	344 12.0	458 16.0	546 19.2	950 33.4	128 4.4	238 8.3	238 8.3	367 12.8	440 15.3	587 20.4	746 26.2	1274 44.8
80/60 °C	T return primary	°C	62	62	62	62	62	62	67	65	62	62	62	62	62	62	66	61
	V primary Q max.	m³/h kW	3.5 112	6.1 195	6.6 208	10.0 321	12.0 385	16.0 513	25.0 667	40.0 1132	3.5 132	5.2 195	6.5 240	10.0 378	12.0 453	15.5 572	25.0 832	36.3 1366
	V secondary	m³/h	4.9	8.5	9.1	14.0	16.8	22.4	29.3	49.7	5.7	8.5	10.5	16.5	19.8	25.0	36.6	60.0
80/65 °C	T return primary V primary	°C m³/h	67 3.5	67 5.6	67 6.6	67 10.0	67 12.0	67 16.0	71 25.0	68 40.0	67 3.5	67 4.6	67 5.7	67 9.0	67 10.9	67 13.7	69 22.7	65 31.1
	Q max.	kW	92	146	171	263	315	420	546	987	112	146	180	300	343	428	682	1023
	V secondary	m³/h	5.3	8.5	9.9	15.3	18.4	24.5	19.2	57.8	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
75/50 °C	T return primary V primary	°C m³/h	52 3.5	52 5.7	52 6.6	52 10.0	52 12.0	52 16.0	58 25.0	56 40.0	52 3.5	52 5.0	52 6.2	52 10.0	52 11.9	52 14.9	57 25.0	51 35.4
	Q max.	kW m³/h	153	244 8.5	284 9.8	437	524	699 24.3	910 31.9	1537	173 6.0	244 8.5	302 10.5	494	575 20.0	718 25.0	1072 37.6	1713
70/50 °C	V secondary T return primary	°C	5.3 52	6.5 52	52	15.2 52	18.2 52	52	55	53.8 54	52	6.5 52	52	17.2 52	52	52	54	60.0 50
70/50 C	V primary	m³/h	3.5	4.5	5.6	9. 4	10.7	13.5	23.1	34.3	3.1	4. 0	5. 0	8. 3	9. 5	11.9	19.8	27.6
	Q max. V secondary	kW m³/h	149 6.5	195 8.5	241 10.5	402 17.5	460 20.0	575 25.0	915 40.0	1417 62.0	149 6.5	195 8.5	241 10.5	402 17.5	460 20.0	575 25.0	915 40.0	1372 60.0
70/55 °C	T return primary	°C	57	57	57	57	57	57	58	57	57	57	57	57	57	57	57	55
	V primary Q max.	m³/h kW	3.0 112	3.9 146	4.8 181	8.1 301	9.2 344	11.6 430	18.8 685	28.3 1062	2.6 112	3.4 146	4.2 181	7.0 301	8.0 344	10.1 430	16.0 685	23.0 1028
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
65/40 °C	T return primary	°C	42	42	42	42	42	42	47	45	42	42	42	42	42	42	46	41
	V primary Q max.	m³/h kW	3.4 187	4.5 245	5.6 303	9.3 504	10.6 577	13.4 721	23.3 1146	34.7 1777	3.1 187	4.1 245	5.1 303	8.5 504	9.7 577	12.1 721	20.5 1146	28.4 1720
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
60/40 °C	T return primary V primary	°C m³/h	42 2.7	42 3.6	42 4.4	42 7.4	42 8.5	42 10.7	44 17.5	43 26.5	42 2.5	42 3.3	42 4.0	42 6.8	42 7.7	42 9.7	43 15.7	40 22.5
	Q max.	kW	150	196	242	404	461	576	918	1423	150	196	242	404	461	576	918	1377
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
60/45 °C	T return primary V primary	°C m³/h	47 2.3	47 3.0	47 3.7	47 6.2	47 7.1	47 8.9	47 14.1	46 21.6	47 2.0	47 2.7	47 3.3	47 5.6	47 6.4	47 8.0	47 12.6	45 18.4
	Q max. V secondary	kW m³/h	112 6.5	147 8.5	181 10.5	302 17.5	345 20.0	432 25.0	688 40.0	1066 62.0	112 6.5	147 8.5	181 10.5	302 17.5	345 20.0	432 25.0	688 40.0	1032 60.0
55/30 °C	T return primary	°C	32	32	32	32	32	32	34	31	32	32	32	32	32	32	34	30
00,00	V primary	m³/h	2.8	3.7	4.6	7.7	8.8	11.1	18.6	26.9	2.6	3.4	4.3	7.1	8.2	10.2	16.8	24.0
	Q max. V secondary	kW m³/h	188 6.5	246 8.5	303 10.5	506 17.5	578 20.0	722 25.0	1151 40.0	1784 62.0	188 6.5	246 8.5	303 10.5	506 17.5	578 20.0	722 25.0	1151 40.0	1726 60.0
50/30 °C	T return primary	°C	32	32	32	32	32	32	32	30	32	32	32	32	32	32	32	30
	V primary Q max.	m³/h kW	2.3 150	3.0 196	3.7 243	6.2 404	7.1 462	8.9 578	14.3 921	21.3 1428	2.1 150	2.7 196	3.4 243	5.7 404	6.5 462	8.2 578	13.1 921	19.0 1382
	У secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
50/35 °C	T return primary v primary	°C m³/h	37 1.8	37 2.4	37 3.0	37 5.0	37 5.8	37 7.3	36 11.4	35 17.3	37 1.7	37 2.2	37 2.8	37 4.6	37 5.3	37 6.7	35 10.4	30 19.0
	Q max.	kW	112	2. 4 147	182	303	346	433	690	1070	112	2.2 147	2.6 182	303	346	433	690	1036
	V secondary	m³/h	6.5	8.5	10.5	17.5	20.0	25.0	40.0	62.0	6.5	8.5	10.5	17.5	20.0	25.0	40.0	60.0
45/30 °C	T return primary V primary	°C m³/h	32 1.7	32 2.2	32 2.7	32 4.6	32 5.3	32 6.7	30 10.4	30 16.0	32 1.6	32 2.0	32 2.5	32 4.3	32 4.9	32 6.2	30 9.6	30 14.2
	Q max. V secondary	kW m³/h	113 6.5	147 8.5	182 10.5	303 17.5	347 20.0	433 25.0	691 40.0	1072 62.0	113 6.5	147 8.5	182 10.5	303 17.5	347 20.0	433 25.0	691 40.0	1037 60.0
45/35 °C	T return primary	°C	37	37	37	37	37	37	35	35	37	37	37	37	37	37	35	35
- 0/00 C	V primary	m³/h	1.2	1.6	2.0	3.3	3.8	4.9	7.5	11.6	1.1	1.5	1.8	3.1	3.5	4.4	6.8	10.2
	Q max. V secondary	kW m³/h	75 6.5	98 8.5	121 10.5	202 17.5	231 20.0	288 25.0	460 40.0	714 62.0	75 6.5	98 8.5	121 10.5	202 17.5	231 20.0	288 25.0	460 40.0	691 60.0

									ı	District	heating	g						
Trans Th	erm pro S/RS						0 .C	÷	·	÷				÷	130 °C		•	÷
Heating	eriii pro o/ito		N36)	N50)	N60)	N100.	N140.	V200.	N180.	N200.	N36)	N50)	N60)	N100.	N140.	V200.	N180.	N200.
seconda	ry		(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)	(A/H0/N36)	(B/H0/N50)	(C/H0/N60)	(D/H0/N100)	(E/H0/N140)	(F/H0/N200)	(G/H0/N180)	(H/H0/N200)
85/60 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	63 3.5 186 6.5	63 4.6 243 8.5	63 5.7 301 10.5	63 9.6 501 17.5	63 10.9 573 20.0	63 13.7 716 25.0	65 22.0 1137 40.0	61 31.4 1706 60.0	63 2.5 186 6.5	63 3.3 243 8.5	63 4.1 301 10.5	63 6.8 501 17.5	63 7.8 573 20.0	63 9.8 716 25.0	62 15.3 1137 40.0	60 22.3 1706 60.0
80/60 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	62 2.7 149 6.5	62 3.6 195 8.5	62 4.5 240 10.5	62 7.5 401 17.5	62 8.5 458 20.0	62 10.7 572 25.0	62 17.3 910 40.0	60 24.7 1366 60.0	62 2.0 149 6.5	62 2.6 195 8.5	62 3.2 240 10.5	62 5.3 401 17.5	62 6.1 458 20.0	62 7.7 572 25.0	61 12.0 910 40.0	60 17.8 1366 60.0
80/65 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	67 2.3 111 6.5	67 3.0 146 8.5	67 3.7 180 10.5	67 6.2 300 17.5	67 7.1 343 20.0	67 9.0 428 25.0	66 14.0 682 40.0	65 20.3 1023 60.0	67 1.6 111 6.5	67 2.1 146 8.5	67 2.6 180 10.5	67 4.3 300 17.5	67 4.9 343 20.0	67 6.2 428 25.0	65 9.6 682 40.0	65 14.3 1023 60.0
75/50 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	52 2.9 187 6.5	52 3.8 244 8.5	52 4.6 302 10.5	52 7.8 503 17.5	52 8.9 575 20.0	52 11.2 718 25.0	53 18.3 1142 40.0	50 26.0 1713 60.0	52 2.1 187 6.5	52 2.8 244 8.5	52 3.5 302 10.5	52 5.9 503 17.5	52 6.7 575 20.0	52 8.4 718 25.0	51 13.3 1142 40.0	50 19.6 1713 60.0
70/50 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	52 2.3 149 6.5	52 3.0 195 8.5	52 3.7 241 10.5	52 6.2 402 17.5	52 7.1 460 20.0	52 8.9 575 25.0	51 14.8 914 40.0	50 20.6 1372 60.0	52 1.7 149 6.5	52 2.2 195 8.5	52 2.8 241 10.5	52 4.7 402 17.5	52 5.3 460 20.0	52 6.7 575 25.0	50 10.5 914 40.0	50 15.9 1372 60.0
70/55 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	57 1.9 112 6.5	57 2.4 146 8.5	57 3.0 181 10.5	57 5.1 301 17.5	57 5.8 344 20.0	57 7.3 430 25.0	55 11.4 685 40.0	55 16.8 1028 60.0	57 1.4 112 6.5	57 1.8 146 8.5	57 2.2 181 10.5	57 3.7 301 17.5	57 4.3 344 20.0	57 5.4 430 25.0	55 8.3 685 40.0	55 12.5 1028 60.0
65/40 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	42 2.4 187 6.5	42 3.2 245 8.5	42 4.0 303 10.5	42 6.6 504 17.5	42 7.6 577 20.0	42 9.6 721 25.0	43 15.4 1146 40.0	40 22.2 1720 60.0	42 1.9 187 6.5	42 2.5 245 8.5	42 3.1 303 10.5	42 5.2 504 17.5	42 6.0 577 20.0	42 7.5 721 25.0	41 11.8 1146 40.0	40 17.5 1720 60.0
60/40 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	42 1.9 150 6.5	42 2.6 196 8.5	42 3.2 242 10.5	42 5.3 404 17.5	42 6.1 461 20.0	42 7.7 576 25.0	41 12.0 918 40.0	40 17.7 1377 60.0	42 1.5 150 6.5	42 2.0 196 8.5	42 2.5 242 10.5	42 4.2 404 17.5	42 4.8 461 20.0	42 6.0 576 25.0	40 9.4 918 40.0	40 14.0 1377 60.0
60/45 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	47 1.6 112 6.5	47 2.1 147 8.5	47 2.5 181 10.5	47 4.3 302 17.5	47 4.9 345 20.0	47 6.2 432 25.0	45 9.6 687 40.0	45 14.3 1032 60.0	47 1.2 112 6.5	47 1.6 147 8.5	47 2.0 181 10.5	47 3.3 302 17.5	47 3.8 345 20.0	47 4.8 432 25.0	45 7.4 687 40.0	45 11.1 1032 60.0
55/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	32 2.1 188 6.5	32 2.8 246 8.5	32 3.5 303 10.5	32 5.8 506 17.5	32 6.6 578 20.0	32 8.4 722 25.0	32 13.4 1151 40.0	30 19.5 1726 60.0	32 1.7 188 6.5	32 2.3 246 8.5	32 2.8 303 10.5	32 4.7 506 17.5	32 5.4 578 20.0	32 6.8 722 25.0	31 10.6 1151 40.0	30 15.8 1726 60.0
50/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	32 1.7 150 6.5	32 2.2 196 8.5	32 2.8 243 10.5	32 4.6 404 17.5	32 5.3 462 20.0	32 6.7 578 25.0	31 10.5 921 40.0	30 15.6 1382 60.0	32 1.4 150 6.5	32 1.8 196 8.5	32 2.2 243 10.5	32 3.7 404 17.5	32 4.3 462 20.0	32 5.4 578 25.0	30 8.4 921 40.0	30 12.6 1382 60.0
50/35 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	37 1.3 112 6.5	37 1.8 147 8.5	37 2.2 182 10.5	37 3.7 303 17.5	37 4.2 346 20.0	37 5.4 433 25.0	35 8.3 690 40.0	35 12.4 1036 60.0	37 1.1 112 6.5	37 1.4 147 8.5	37 1.7 182 10.5	37 2.9 303 17.5	37 3.4 346 20.0	37 4.3 433 25.0	35 6.6 690 40.0	35 9.9 1036 60.0
45/30 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	32 1.3 113 6.5	32 1.7 147 8.5	32 2.1 182 10.5	32 3.5 303 17.5	32 4.0 347 20.0	32 5.0 433 25.0	30 7.8 691 40.0	30 11.7 1037 60.0	32 1.0 113 6.5	32 1.3 147 8.5	32 1.7 182 10.5	32 2.8 303 17.5	32 3.2 347 20.0	32 4.1 433 25.0	30 6.3 691 40.0	30 9.5 1037 60.0
45/35 °C	T return primary V primary Q max. V secondary	°C m³/h kW m³/h	37 0.9 75 6.5	37 1.2 98 8.5	37 1.5 121 10.5	37 2.5 202 17.5	37 2.8 231 20.0	37 3.6 288 25.0	35 5.5 460 40.0	35 8.3 691 60.0	37 0.6 75 6.5	37 0.9 98 8.5	37 1.1 121 10.5	37 1.4 202 17.5	37 2.1 231 20.0	37 2.7 288 25.0	35 4.4 460 40.0	35 6.6 691 60.0

TransTherm® pro S type (A-C) (Dimensions in mm)

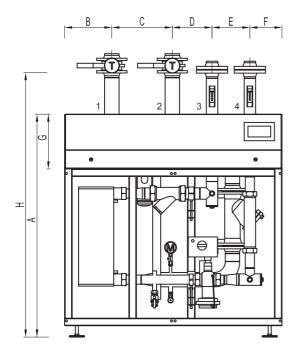

- Flow secondary 1
- 2 Return secondary
- 3 Flow primary
- Return primary

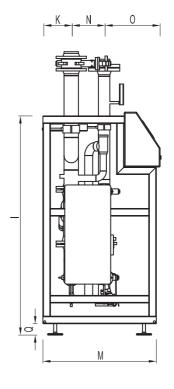

TransTherm [®] pro S	Α	В	С	D	E	F	G	Н	1	K	L	М	N	0	Р	Q
(A-C)	1180	250	320	210	200	170	290	1400	1160	150	1150	620	174	296	620	60

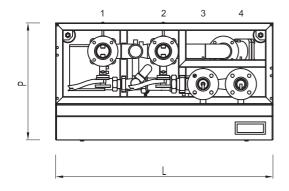

Allocation of heat meters

TransTherm [®]	Heat meter	Installation length	Connection size
pro S/RS	qp	mm	inches
(A, B, C)	3.5	260	R 11/4"
(A, B, C)	6.0	260	R 11/4"

TransTherm® pro RS type (A-C) (Dimensions in mm)

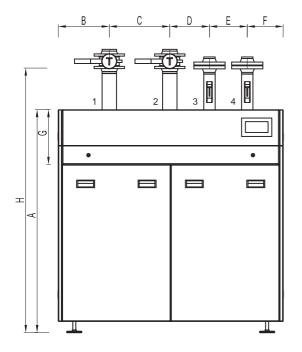


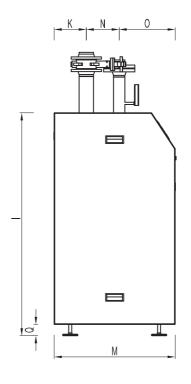


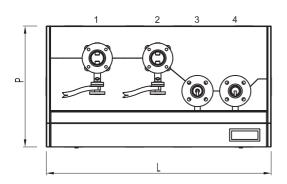

- Flow secondary
- Return secondary 2
- Flow primary
- Return primary

TransTherm [®] pro RS	Α	В	С	D	Е	F	G	Н	ı	K	L	М	N	0	Р	Q	
(A-C)	1180	270	320	210	200	190	290	1400	1180	170	1190	640	174	296	640	60	

TransTherm® pro S type (D) (Dimensions in mm)

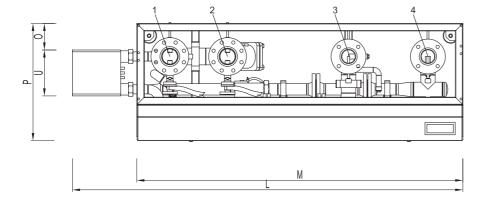

- Flow secondary
- Return secondary
- 3 Flow primary
- Return primary


TransTherm [®] pro S	Α	В	С	D	Е	F	G	Н	I	K	L	M	N	0	Р	Q
(D)	1180	250	320	210	200	170	290	1500	1160	150	1150	620	174	296	620	60


Allocation of heat meters

TransTherm®	Heat meter	Installation length	Connection size
pro S/RS	qp	mm	inches
(D)	10	300	R 2"

TransTherm® pro RS type (D) (Dimensions in mm)

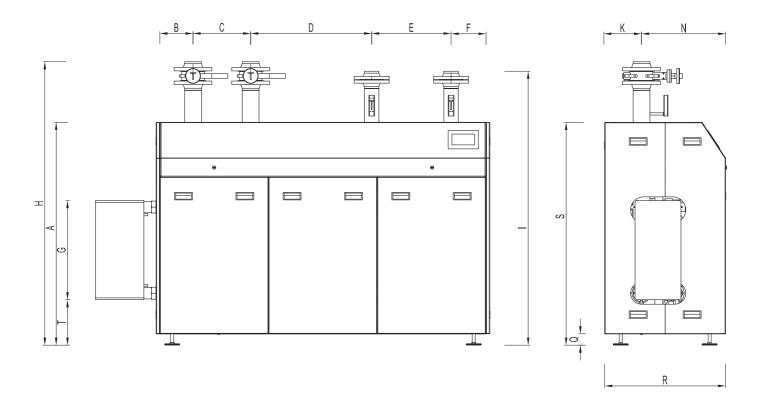


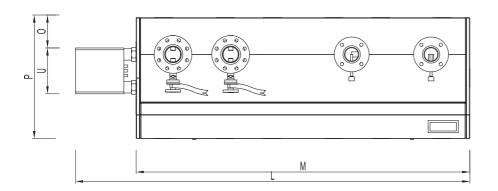
- Flow secondary
- 2 Return secondary
- 3 Flow primary
- Return primary

TransTherm [®] pro RS	Α	В	С	D	E	F	G	Н	1	K	L	М	N	0	Р	Q
(D)	1180	270	320	210	200	190	290	1500	1180	170	1190	640	174	296	640	60

TransTherm® pro S type (E-G) (Dimensions in mm)

- Flow secondary
- Return secondary
- Flow primary
- Return primary

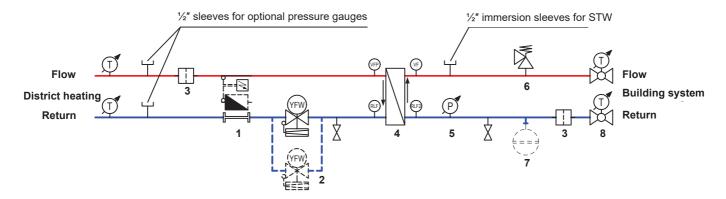

TransTherm [®] pro S	Α	В	С	D	Е	F	G	Н	I	K	L	М	N	0	Р	Q	R	S	Т	U	
(E)	1180	175	305	640	420	185	525	1500	1450	175	2066	1725	445	141	620	60	600	1160	241	243	
(F)	1180	175	305	640	420	185	525	1500	1450	175	2275	1725	445	141	620	60	600	1160	241	243	
(G)	1180	175	305	640	420	185	525	1500	1450	175	2320	1725	445	128	620	60	600	1160	241	243	


Allocation of heat meters

TransTherm®	Heat meter	Installation length	Connection size
pro S/RS	qp	mm	inches
(E, F)	15	270	DN 50 FL
(G)	25	300	DN 65 FL
(H)	40	300	DN 80 FL

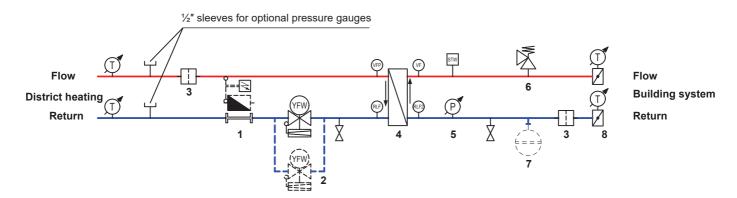
TransTherm® pro S type (H) on request

TransTherm® pro RS type (E-G) (Dimensions in mm)


- Flow secondary
- Return secondary
- Flow primary
- Return primary

TransTherm [®] pro RS	Α	В	С	D	Е	F	G	Н	1	K	L	М	N	0	Р	Q	R	S	Т	U
(E)	1180	105	305	640	420	205	525	1500	1450	105	2086	1765	115	161	640	60	640	1180	241	243
(/																				
(F)	1180		305								2295						640	1180		
(G)	1180	195	305	640	420	205	525	1500	1450	195	2340	1765	445	148	640	60	640	1180	241	243

TransTherm® pro S/RS 110 °C (16 bar)



TransTherm® pro S/RS 140 °C (16 bar), 150 °C (25 bar)

- 1 Heat meter adapter (heat meter optional)
- 2 Flow rate controller with motorised control valve (for types F and G, sequential circuit with 2 valves)
- 3 Strainer
- 4 Heat exchanger
- 5 Pressure gauge
- 6 Safety valve
- 7 Diaphragm pressure expansion tank connection (diaphragm pressure expansion tank optionally)
- 8 Shut-off valve with thermometer

RLF Return sensor
VF Flow sensor
AF Outdoor sensor

Notice:

- The example schematics merely show the basic principle and do not contain all information required for installation. The installation must be done according to local conditions, dimensioning and regulations.
- With underfloor heating a flow temperature monitor must be built in.
- Shut-off devices to the safety valve (diaphragm pressure expansion tank, safety valve, etc.) are to safe against unintended closing!
- Mount bags to prevent single pipe gravity circulation!

Hoval TransTherm® giro

District heating transfer station

- · Indirect compact station for heat transfer and regulation of heating and hot water production systems.
- Standard design for heating water in accordance with DIN and AGFW directives. District heating primary:
 - maximum pressure stage 16/25 bar
 - maximum operating temperature 110-150 °C
 - maximum flow rate 4.5 m³/h
 - connections standard design left, conversion to the right on site.

Secondary heating:

- maximum operating pressure 3 bar
- maximum operating temperature 95 °C
- maximum flow rate 6.5 m³/h
- connection optional, top and/or bottom.

Option

- Special design for other requirements and district-heating-specific requirements on request.
- · Installed:

District heating primary:

- 1 flow rate controller with motorised valve, actuator without emergency control function (110 °C) with emergency control function (140, 150 °C)
- 1 heat meter adapter
- 1 return temperature sensor
- 1 flow temperature sensor
- 1 strainer
- 1 drain

Secondary heating:

- stainless steel plate heat exchanger, copper-soldered design
- 1 return temperature sensor
- 1 flow temperature sensor
- 1 safety temperature monitor (140, 150 °C)
- 1 safety valve 3 bar
- 1 pressure gauge
- 1 strainer
- 1 drain
- 1 connection for diaphragm pressure expansion tank
- · District heating station in fully welded and thermally insulated design (100 % thermally insulated), in powder-coated sheet aluminium casing, colour pure white (RAL 9010).
- TopTronic® E controller installed

Series TransTherm® giro type	Hydraulics	Number of plates (heat exchanger)	் Max. flow o temperature	g nominal pressure	≷ Heat output ¹)	TransTherm® giro type	Hydraulics
(H0/N10/T110/P16) (H0/N10/T140/P16) (H0/N10/T150/P25) (H0/N20/T110/P16) (H0/N20/T140/P16) (H0/N20/T150/P25)	0 0 0 0 0	10 10 10 20 20 20	110 140 150 110 140 150	16 16 25 16 16 25	26 26 26 64 64 64	(H0/N60/T110/P16) (H0/N60/T140/P16) (H0/N60/T150/P25) (H0/N80/T110/P16) (H0/N80/T140/P16) (H0/N80/T150/P25)	0 0 0 0 0
(H0/N40/T110/P16) (H0/N40/T140/P16) (H0/N40/T150/P25)	0 0 0	40 40 40	110 140 150	16 16 25	128 128 128	1) Reference tempera secondary 75-50 °	

TransTherm® giro type	Hydraulics	Number of pla (heat exchang	் Max. flow c temperature	g nominal press	≷ Heat output ¹)
(H0/N60/T110/P16)	0	60	110	16	151
(H0/N60/T140/P16)	0	60	140	16	151
(H0/N60/T150/P25)	0	60	150	25	151
(H0/N80/T110/P16)	0	80	110	16	189
(H0/N80/T140/P16)	0	80	140	16	189
(H0/N80/T150/P25)	0	80	150	25	189
1) Reference tempera secondary 75-50 °		e prim	ary 90	-53 °	C/

TopTronic® E controller

TopTronic® E control panel

- Colour touchscreen 4.3 inch
- Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module district heating com (TTE-FW com)

- Control functions integrated for
 - primary valve control
- cascade management
- 1 heating circuit with mixer
- 1 heating circuit without mixer 1 hot water charging circuit
- various additional functions
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- · Complete plug set for DH module

Options for TopTronic® E controller

- · Can be expanded by max.
 - 5 module expansions:
 - module expansion heating circuit DH
 - module expansion hot water DH
 - module expansion universal DH
- Can be optionally expanded with various accessories:
 - Ethernet connection TTE-FW com
 - repeater TTE-FW com LON-Bus
 - router TTE-FW com Ethernet on LON-Bus
 - data socket 13-pin TTE-FW com LON-Bus and lighting protection
 - various software licences for HovalSupervisor
 - various services for HovalSupervisor
- Can be networked with a total of up to 16 controller modules:
- heating circuit/hot water module
- solar module
- buffer module
- measuring module
- e.g. max 45 mixer circuits

Number of modules that can be additionally installed in the control panel:

- 2 module expansions district heating and
- 1 Ethernet connection TTE-FW com
- Free space top-hat rail 310 mm

Further information about the TopTronic® E see "Controls"

Design on request

- Flow rate controller with motorised valve, actuator with emergency control function
- Supply of system components such as heat meter, heating armature group, calorifier, charging group etc.
- Special design for requirements deviating from the standard or specific requirements for district heating networks.
- Hoval control system
- District heating station for direct heat transmission

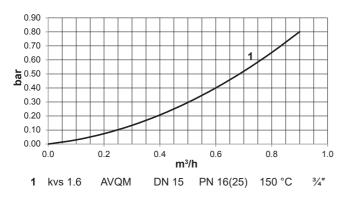
Delivery

 District heating transfer station, fully cased and ready for electrical connection

On site

· Installation of heat meter

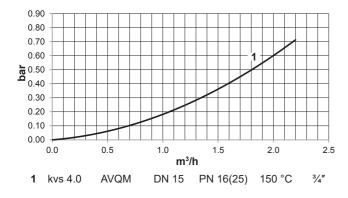
		D	istrict he	eating primary	/			Seconda	ary heating	
TransTherm® giro	Max. nominal pressure	T-max. °C	Valve kvs	Closing pressure 1)	Connection size	∀max . m³/h	Operating pressure	T-max. °C	Connection size	Vmax. m³/h
type	bar			bar	inches				inches	
(H0/N10/T110/P16)	16	110	1.6	4	G 1"	0.9	3	95	Rp 1"	1.3
(H0/N10/T140/P16)	16	140	1.6	14	G 1"	0.9	3	95	Rp 1"	1.3
(H0/N10/T150/P25)	25	150	1.6	20	G 1"	0.9	3	95	Rp 1"	1.3
(H0/N20/T110/P16)	16	110	2.5	4	G 1"	1.2	3	95	Rp 1"	2.4
(H0/N20/T140/P16)	16	140	2.5	14	G 1"	1.6	3	95	Rp 1"	2.4
(H0/N20/T150/P25)	25	150	2.5	20	G 1"	1.6	3	95	Rp 1"	2.4
(H0/N40/T110/P16)	16	110	4.0	14	G 1"	2.4	3	95	Rp 1"	4.5
(H0/N40/T140/P16)	16	140	4.0	14	G 1"	2.4	3	95	Rp 1"	4.5
(H0/N40/T150/P25)	25	150	4.0	20	G 1"	2.4	3	95	Rp 1"	4.5
(H0/N60/T110/P16)	16	110	6.3	14	G 1"	3.5	3	95	Rp 1"	6.5
(H0/N60/T140/P16)	16	140	6.3	14	G 1"	3.5	3	95	Rp 1"	6.5
(H0/N60/T150/P25)	25	150	6.3	20	G 1"	3.5	3	95	Rp 1"	6.5
(H0/N80/T110/P16)	16	110	8.0	14	G 1"	4.5	3	95	Rp 1"	6.5
(H0/N80/T140/P16)	16	140	8.0	14	G 1"	4.5	3	95	Rp 1"	6.5
(H0/N80/T150/P25)	25	150	8.0	20	G 1"	4.5	3	95	Rp 1"	6.5

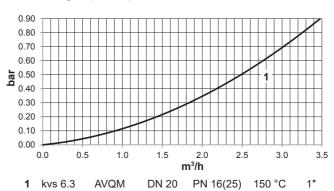

¹⁾ Actuator valve

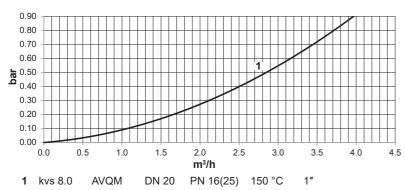
Pressure drop diagrams

District heating primary

dp control valve with heat exchanger, without heat meter.

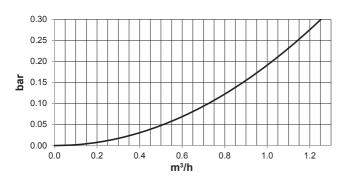

TransTherm® giro (H0/N10)


TransTherm® giro (H0/N20)

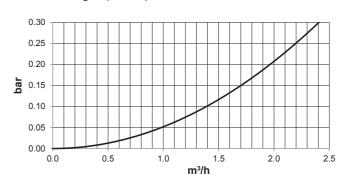

TransTherm® giro (H0/N40)

TransTherm® giro (H0/N60)

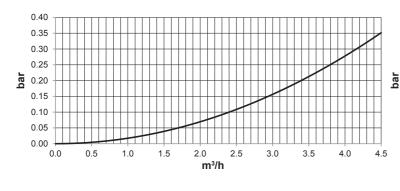
TransTherm® giro (H0/N80)

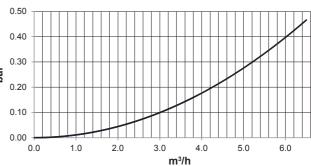


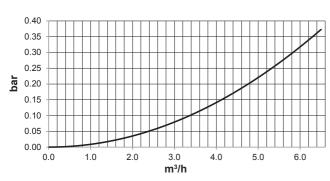
Pressure drop diagrams


Secondary building system

dp heat exchanger


TransTherm® giro (H0/N10)


TransTherm® giro (H0/N20)


TransTherm® giro (H0/N40)

TransTherm® giro (H0/N60)

TransTherm® giro (H0/N80)

Performance data

TransTherm® giro (H0/N10-H0/N80) - 2 outputs for house system - Integrated control

- primary: max. return temperature control secondary: for 1 mixer circuit, 1 heating circuit without mixer, 1 hot water charging circuit

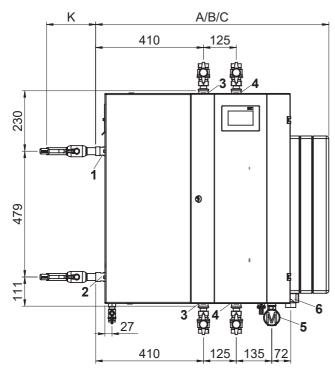
District heating

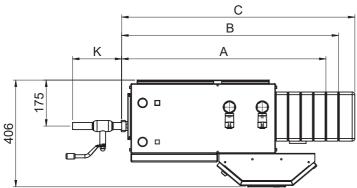
							District					
					70 °C					75 °C		
Secondary heating	TransTherm® giro		H0/N10	H0/N20	H0/N40	H0/N60	H0/N80	H0/N10	H0/N20	H0/N40	H0/N60	H0/N80
75/50 °C	T return primary	°C	-	-	-	-	-	-	-	-	-	-
	V primary	m³/h	-	-	-	-	-	-	-	-	-	-
	Q max.	kW	-	-	-	-	-	-	-	-	-	-
	V secondary	m³/h	-	-	-	-	-	-	-	-	-	-
70/50 °C	T return primary	°C	-	-	-	-	-	55	55	55	55	55
	V primary	m³/h	-	-	-	-	-	0.77	1.60	2.40	3.50	4.50
	Q max.	kW	-	-	-	-	-	18	37	56	81	105
	V secondary	m³/h	-	-	-	-	-	0.77	1.60	2.40	3.50	4.50
70/55 °C	T return primary	°C	-	-	-	-	-	60	60	60	60	60
	V primary	m³/h	-	-	-	-	-	0.92	1.60	2.40	3.50	4.50
	Q max.	kW	-	-	-	-	-	16	28	42	61	79
	V secondary	m³/h	-	-	-	-	-	0.92	1.60	2.40	3.50	4.50
65/40 °C	T return primary	°C	45	45	45	45	45	43	43	43	43	43
	V primary	m³/h	0.34	0.89	2.13	3.30	4.47	0.32	0.86	1.94	3.01	4.09
	Q max.	kW	10	26	62	96	130	12	32	72	112	152
	V secondary	m³/h	0.34	0.89	2.13	3.30	4.47	0.41	1.10	2.48	3.85	5.23
60/40 °C	T return primary	°C	43	43	43	43	43	43	43	43	43	43
	V primary	m³/h	0.57	1.40	2.40	3.50	4.50	0.70	1.45	2.40	3.50	4.06
	Q max.	kW	18	44	75	110	141	26	54	89	130	151
	V secondary	m³/h	0.77	1.89	3.24	4.73	6.08	1.12	2.32	3.84	5.60	6.50
60/45 °C	T return primary	°C	47	47	47	47	47	47	47	47	47	47
	V primary	m³/h	0.67	1.50	2.40	3.50	4.50	0.61	1.23	2.33	3.19	3.48
	Q max.	kW	18	40	64	94	113	20	40	76	104	113
	V secondary	m³/h	1.03	2.29	3.68	5.37	6.50	1.15	2.29	4.36	5.96	6.50
55/30 °C	T return primary	°C	33	33	33	33	33	33	33	33	33	33
	V primary	m³/h	0.42	1.07	2.42	3.50	4.50	0.57	1.35	2.40	3.52	3.87
	Q max.	kW	18	46	104	151	189	28	66	117	172	189
	V secondary	m³/h	0.62	1.58	3.58	5.18	6.50	0.96	2.27	4.03	5.92	6.50
50/30 °C	T return primary	°C	32	32	32	32	32	32	32	32	32	32
	V primary	m³/h	0.54	1.18	2.26	3.03	3.42	0.52	1.04	2.00	2.72	3.02
	Q max.	kW	24	52	100	134	151	26	52	100	136	151
	V secondary	m³/h	1.03	2.24	4.30	5.76	6.50	1.12	2.24	4.30	5.85	6.50
50/35 °C	T return primary	°C	36	36	36	36	36	36	36	36	36	36
	V primary	m³/h	0.51	1.01	1.87	2.58	2.87	0.44	0.88	1.63	2.25	2.50
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/30 °C	T return primary	°C	31	31	31	31	31	31	31	31	31	31
	V primary	m³/h	0.44	0.88	1.63	2.25	2.50	0.39	0.78	1.45	1.99	2.22
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/35 °C	T return primary	°C	36	36	36	36	36	36	36	36	36	36
	V primary	m³/h	0.30	0.66	1.26	1.72	1.91	0.26	0.57	1.10	1.50	1.67
	Q max.	kW	12	26	50	68	76	12	26	50	68	76
	V secondary	m³/h	1.03	2.24	4.30	5.85	6.50	1.03	2.24	4.30	5.85	6.50

- TransTherm[®] giro (H0/N10-H0/N80)
 2 outputs for house system
 Integrated control primary: max. return temperature control secondary: for 1 mixer circuit, 1 heating circuit without mixer, 1 hot water charging circuit

District heating

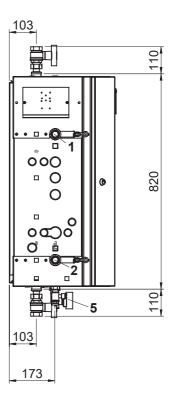
								neating				
					80 °C					90 °C		
Secondary heating	TransTherm® giro		H0/N10	H0/N20	H0/N40	H0/N60	H0/N80	H0/N10	H0/N20	H0/N40	H0/N60	H0/N80
75/50 °C	T return primary	°C	55	55	55	55	55	53	53	53	53	53
	V primary	m³/h	0.41	1.10	2.41	3.50	4.50	0.60	1.49	2.98	3.50	4.50
	Q max.	kW	12	32	70	102	131	26	64	128	151	189
	V secondary	m³/h	0.41	1.10	2.41	3.50	4.50	0.89	2.20	4.40	5.18	6.50
70/50 °C	T return primary	°C	53	53	53	53	53	52	52	52	52	52
	V primary	m³/h	0.64	1.66	2.40	3.50	4.50	0.63	1.22	2.31	3.50	3.50
	Q max.	kW	20	52	75	110	141	28	54	102	151	151
	V secondary	m³/h	0.86	2.24	3.24	4.73	6.08	1.20	2.32	4.39	6.50	6.50
70/55 °C	T return primary	°C	58	58	58	58	58	57	57	57	57	57
	V primary	m³/h	0.78	1.56	2.97	3.50	4.50	0.52	1.04	1.98	2.71	2.96
	Q max.	kW	20	40	76	90	113	20	40	76	104	113
	V secondary	m³/h	1.15	2.29	4.36	5.13	6.50	1.15	2.29	4.36	5.96	6.50
65/40 °C	T return primary	°C	42	42	42	42	42	42	42	42	42	42
	V primary	m³/h	0.32	0.81	1.77	2.76	4.28	0.61	1.22	2.26	3.12	3.39
	Q max.	kW	14	36	78	122	189	34	68	126	174	189
	V secondary	m³/h	0.48	1.24	2.68	4.20	6.50	1.17	2.34	4.33	5.99	6.50
60/40 °C	T return primary	°C	42	42	42	42	42	42	42	42	42	42
	V primary	m³/h	0.59	1.22	2.26	3.12	3.42	0.47	0.97	1.79	2.47	2.71
	Q max.	kW	26	54	100	138	151	26	54	100	138	151
	V secondary	m³/h	1.12	2.32	4.30	5.93	6.50	1.12	2.32	4.30	5.93	6.50
60/45 °C	T return primary	°C	47	47	47	47	47	47	47	47	47	47
	V primary	m³/h	0.52	1.04	1.98	2.71	2.96	0.40	0.80	1.52	2.08	2.27
	Q max.	kW	20	40	76	104	113	20	40	76	104	113
	V secondary	m³/h	1.15	2.29	4.36	5.96	6.50	1.15	2.29	4.36	5.96	6.50
55/30 °C	T return primary	°C	33	33	33	33	33	32	32	32	32	32
	V primary	m³/h	0.62	1.21	2.27	3.15	3.46	0.50	0.98	1.84	2.55	2.80
	Q max.	kW	34	66	124	172	189	34	66	124	172	189
	V secondary	m³/h	1.17	2.27	4.27	5.92	6.50	1.17	2.27	4.27	5.92	6.50
50/30 °C	T return primary	°C	32	32	32	32	32	32	32	32	32	32
	V primary	m³/h	0.47	0.93	1.79	2.44	2.71	0.39	0.77	1.48	2.02	2.24
	Q max.	kW	26	52	100	136	151	26	52	100	136	151
	V secondary	m³/h	1.12	2.24	4.30	5.85	6.50	1.12	2.24	4.30	5.85	6.50
50/35 °C	T return primary	°C	36	36	36	36	36	36	36	36	36	36
	V primary	m³/h	0.39	0.78	1.45	1.99	2.22	0.32	0.64	1.18	1.62	1.81
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
45/00.00	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/30 °C	T return primary	°C	31	31	31	31	31	31	31	31	31	31
	V primary	m³/h	0.35	0.70	1.30	1.79	1.99	0.29	0.58	1.08	1.49	1.65
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
45/05.00	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/35 °C	T return primary	°C	36	36	36	36	36	36	36	36	36	36
	V primary	m³/h	0.23	0.51	0.98	1.33	1.48	0.19	0.41	0.80	1.08	1.20
	Q max.	kW	12	26	50	68	76 0.50	12	26	50	68 5.05	76
	V secondary	m³/h	1.03	2.24	4.30	5.85	6.50	1.03	2.24	4.30	5.85	6.50


- TransTherm® giro (H0/N10-H0/N80)
 2 outputs for house system
 Integrated control primary: max. return temperature control secondary: for 1 mixer circuit, 1 heating circuit without mixer, 1 hot water charging circuit


District heating

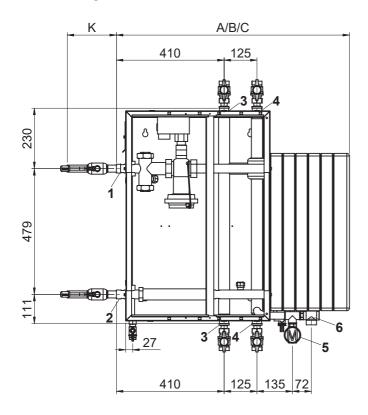
							District	heating				
					110 °C					130 °C		
Secondary heating	TransTherm® giro		H0/N10	H0/N20	H0/N40	H0/N60	H0/N80	H0/N10	H0/N20	H0/N40	H0/N60	H0/N80
75/50 °C	T return primary	°C	52	52	52	52	52	52	52	52	52	52
	V primary	m³/h	0.50	1.01	1.90	2.58	2.80	0.37	0.75	1.41	1.92	2.08
	Q max.	kW	34	68	128	174	189	34	68	128	174	189
	V secondary	m³/h	1.17	2.34	4.40	5.99	6.50	1.17	2.34	4.40	5.99	6.50
70/50 °C	T return primary	°C	52	52	52	52	52	52	52	52	52	52
	V primary	m³/h	0.42	0.80	1.51	2.24	2.24	0.31	0.60	1.12	1.67	1.67
	Q max.	kW	28	54	102	151	151	28	54	102	151	151
	V secondary	m³/h	1.20	2.32	4.39	6.50	6.50	1.20	2.32	4.39	6.50	6.50
70/55 °C	T return primary	°C	57	57	57	57	57	57	57	57	57	57
	V primary	m³/h	0.32	0.65	1.23	1.69	1.84	0.24	0.47	0.90	1.23	1.34
	Q max.	kW	20	40	76	104	113	20	40	76	104	113
	V secondary	m³/h	1.15	2.29	4.36	5.96	6.50	1.15	2.29	4.36	5.96	6.50
65/40 °C	T return primary	°C	42	42	42	42	42	42	42	42	42	42
	V primary	m³/h	0.43	0.86	1.59	2.20	2.39	0.33	0.66	1.23	1.70	1.85
	Q max.	kW	34	68	126	174	189	34	68	126	174	189
	V secondary	m³/h	1.17	2.34	4.33	5.99	6.50	1.17	2.34	4.33	5.99	6.50
60/40 °C	T return primary	°C	42	42	42	42	42	42	42	42	42	42
	V primary	m³/h	0.33	0.68	1.26	1.75	1.91	0.25	0.53	0.98	1.35	1.48
	Q max.	kW	26	54	100	138	151	26	54	100	138	151
	V secondary	m³/h	1.12	2.32	4.30	5.93	6.50	1.12	2.32	4.30	5.93	6.50
60/45 °C	T return primary	°C	47	47	47	47	47	47	47	47	47	47
	V primary	m³/h	0.27	0.55	1.04	1.42	1.55	0.21	0.41	0.79	1.08	1.17
	Q max.	kW	20	40	76	104	113	20	40	76	104	113
	V secondary	m³/h	1.15	2.29	4.36	5.96	6.50	1.15	2.29	4.36	5.96	6.50
55/30 °C	T return primary	°C	32	32	32	32	32	32	32	32	32	32
	V primary	m³/h	0.37	0.73	1.37	1.90	2.08	0.30	0.58	1.09	1.51	1.66
	Q max.	kW m³/h	34 1.17	66	124 4.27	172 5.92	189 6.50	34 1.17	66 2.27	124 4.27	172 5.92	189 6.50
50/30 °C	V secondary T return primary	°C	32	2.27 32	32	32	32	32	32	32	32	32
50/30 C	V primary	m³/h	0.29	0. 57	1.10	1. 50	1.67	0.23	0.46	0.88	32 1.19	1.33
	Q max.	kW	26	52	100	136	151	26	52	100	136	1.33 151
	V secondary	m³/h	1.12	2.24	4.30	5.85	6.50	1.12	2.24	4.30	5.85	6.50
50/35 °C	T return primary	°C	36	36	36	36	36	36	36	36	36	36
30/33 0	V primary	m³/h	0.23	0.46	0.86	1.19	1.32	0.18	0.37	0.68	0.93	1.04
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/30 °C	T return primary	°C	31	31	31	31	31	31	31	31	31	31
10/00	V primary	m³/h	0.22	0.44	0.81	1.11	1.23	0.17	0.35	0.64	0.89	0.99
	Q max.	kW	20	40	74	102	113	20	40	74	102	113
	V secondary	m³/h	1.15	2.29	4.24	5.85	6.50	1.15	2.29	4.24	5.85	6.50
45/35 °C	T return primary	°C	36	36	36	36	37	36	36	36	36	36
	V primary	m³/h	0.14	0.30	0.58	0.79	0.89	0.11	0.24	0.46	0.62	0.69
	Q max.	kW	12	26	50	68	76	12	26	50	68	76
	V secondary	m³/h	1.03	2.24	4.30	5.85	6.50	1.03	2.24	4.30	5.85	6.50
	. 5555114419	/!!	1.00	E-E-T	7.00	0.00	0.00	1.00	4.4 7	7.00	0.00	0.00

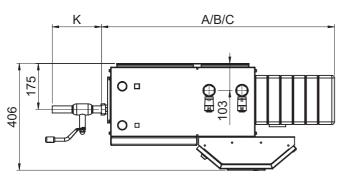
(Dimensions in mm)


District heating connection on the left - view of exterior

TransTherm® giro type	Designation	without option (ball valve)
(H0/N10,H0/N20)	Α	791
(H0/N40)	В	839
(H0/N60,H0/N80)	С	887

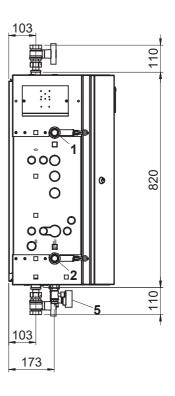
Ball valve option	Size	Connection size inches	K mm
70.70	DN 20	3/4"	85
and the second	DN 25	1"	110
Person - Person	DN 32	11/4"	115
· · · ·	DN 20	3/4"	180
	DN 25	1"	195
	DN 32	11/4"	235




1	Flow primary	R 1"
2	Return primary	R 1"
3	Flow secondary	Rp 1"
4	Return secondary	Rp 1"
5	Diaphragm pressure expansion tank connection	Rp ½
6	(ball valves/pressure gauge options) Safety valve	1/2"

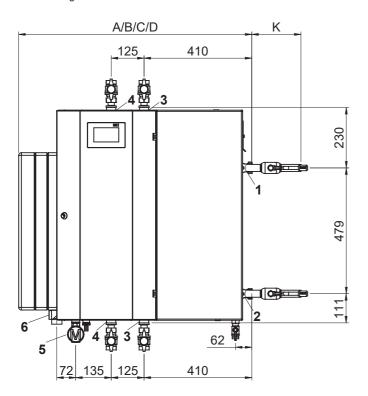
Adapters for heat mete PN 16 (H0/N10,H0/N20) (H0/N40,H0/N60) (H0/N80) PN 25 (H0/N10-H0/N60)	R ¾", 110 mm R 1", 130 mm R 1¼", 260 mm R 1", 190 mm
(H0/N80)	R 1¼", 260 mm
Sensor dimensions 1 x M10 x 1 (27.5-38 mm 1 x ¼" for immersion slee (length without add-on 38	eve

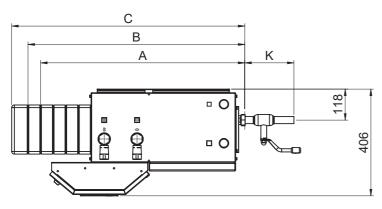
(Dimensions in mm)


District heating connection on the left - view of interior

TransTherm® giro type	Designation	without option (ball valve)
(H0/N10,H0/N20)	Α	791
(H0/N40)	В	839
(H0/N60,H0/N80)	С	887

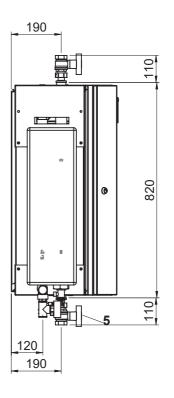
Ball valve option	Size	Connection size inches	K mm
70.70	DN 20	3/4"	85
a En a En	DN 25	1"	110
Personal Property	DN 32	11/4"	115
<i>C C</i>	DN 20	3/4"	180
	DN 25	1"	195
	DN 32	11/4"	235


1	Flow primary	R 1"
2	Return primary	R 1"
3	Flow secondary	Rp 1"
4	Return secondary	Rp 1"
5	Diaphragm pressure expansion tank	Rp 1/2"
	connection	
	(ball valves/pressure gauge options)	
6	Safety valve	1/2"


Adapters for heat meter: PN 16 (H0/N10,H0/N20) R 3/4", 110 mm (H0/N40,H0/N60) R 1", 130 mm (H0/N80) R 11/4", 260 mm PN 25 (H0/N10-H0/N60) R 1", 190 mm (H0/N80) R 11/4", 260 mm Sensor dimensions 1 x M10 x 1 (27.5-38 mm) 1 x 1/4" for immersion sleeve

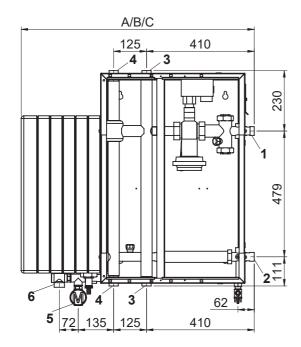
(length without add-on 35 mm)

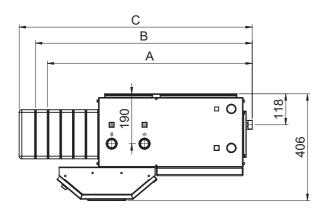
(Dimensions in mm)


District heating connection on the right - view of exterior For this connection type, the casing must be turned through 180° on site.

TransTherm® giro type	Designation	without option (ball valve)
(H0/N10,H0/N20)	Α	791
(H0/N40)	В	839
(H0/N60,H0/N80)	С	887

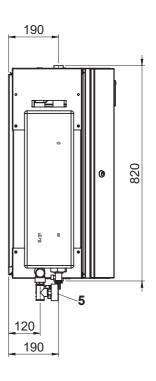
Ball valve option	Size	Connection size inches	K mm
70.70	DN 20	3/4"	85
and the second	DN 25	1"	110
Person - Person	DN 32	11/4"	115
<i>C C</i>	DN 20	3/4"	180
	DN 25	1"	195
	DN 32	11/4"	235




1	Flow primary	R 1"
2	Return primary	R 1"
3	Flow secondary	Rp 1"
4	Return secondary	Rp 1"
5	Diaphragm pressure expansion tank connection	Rp ½
	(ball valves/pressure gauge options)	
6	Safety valve	1/2"

Adapters for heat meter PN 16 (H0/N10,H0/N20) (H0/N40,H0/N60) (H0/N80) PN 25	R ³ / ₄ ", 110 mm R 1", 130 mm R 11/ ₄ ", 260 mm	
(H0/N10-H0/N60) (H0/N80)	R 1", 190 mm R 1¼", 260 mm	
Sensor dimensions 1 x M10 x 1 (27.5-38 mm) 1 x 1/4" for immersion sleeve (length without add-on 35 mm)		

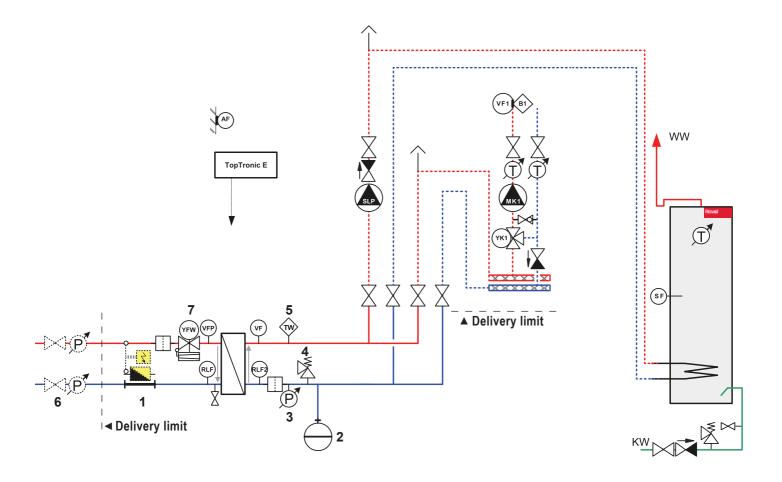
(Dimensions in mm)


District heating connection on the right - view of interior For this connection type, the casing must be turned through 180° on site.

TransTherm® giro type	Designation	without option (ball valve)
(H0/N10,H0/N20)	Α	791
(H0/N40)	В	839
(H0/N60,H0/N80)	С	887

Ball valve option	Size	Connection size inches	K mm
T T	DN 20	3/4"	85
o En o En	DN 25	1"	110
-PersonPerson	DN 32	11/4"	115
~ ~	DN 20	3/4"	180
	DN 25	1"	195
	DN 32	11/4"	235

1	Flow primary	R 1"
2	Return primary	R 1"
3	Flow secondary	Rp 1"
4	Return secondary	Rp 1"
5	Diaphragm pressure expansion tank	Rp 1/2"
	connection	
	(ball valves/pressure gauge options)	
6	Safety valve	1/2"


Adapters for heat meter:						
(H0/N10,H0/N20)	R ¾", 110 mm					
(H0/N40,H0/N60)	R 1", 130 mm					
(H0/N80)	R 1¼", 260 mm					
PN 25						
(H0/N10-H0/N60)	R 1", 190 mm					
(H0/N80)	R 1¼", 260 mm					
Sensor dimensions						
1 x M10 x 1 (27.5-38 mm) 1 x 1/4" for immersion sleeve						
1 X /4 101 IIIImersion sieeve						

(length without add-on 35 mm)

District heating station with

- 1 heating circuit with mixer
- hot water production

Hydraulic schematic BGAE010

Notice

- The example schematics merely show the basic principle and do not contain all information required for installation. The installation must be done according to local conditions, dimensioning and regulations.
- With underfloor heating a flow temperature monitor must be built in.
- Shut-off devices to the safety valve (diaphragm pressure expansion tank, safety valve, etc.) are to safe against unintended closing!
- Mount bags to prevent single pipe gravity circulation!

- 1 Heat meter adapter (heat meter optional)
- 2 Diaphragm pressure expansion tank (option)
- 3 Pressure gauge
- 4 Safety valve
- 5 Temperature monitor Standard on design 140/150 °C, 16/25 bar Optional on design 110 °C/16 bar
- 6 Shut-off valve (option)
- 7 Flow rate controller with motorised control valve
- RLF Return sensor

RLF2 Return sensor (secondary)

VFP Flow sensor (primary)

VF Flow sensor (secondary)

AF Outdoor sensor

SF Calorifier sensorTW Temperature monitor

Hoval TransShare

- Flexible heating distributor in a fully welded configuration, mounted without vibration on a stand frame.
- The type of connection to the heat generator can be freely selected prior to production and is either on the left or right facing up.
- The heating distributor design can include a controller and an electric control panel. The TopTronic® E controller and all electrical field devices (drive and sensor) are then wired and ready to connect.
- For cold applications below the dew point, we offer the TransShare cold distributor with the appropriate valves, double corrosion protection coating and optional cold insulation.
- The system is designed and manufactured in line with the generally recognised codes of practice and is certified according to ISO 9001.
- Various hydraulic variants are possible, e.g.:
 with domestic water heating in the buf-
 - with domestic water heating in the butfer storage principle
 - set-up with several mixers and/or direct heating circuits
 - set-up with two return flow collectors (high temperature and low temperature)
- Setting up with two return collectors is to be recommended if there is a high or mediumtemperature heating circuit and a low-temperature heating circuit. The lower return temperature leads to higher efficiency levels in condensing boilers and a greater heat energy content in the buffer storage tank. Planning of the TransShare heating distributor is always carried out in relation to the building, and is adapted to the corresponding output values, temperatures and flow rates.
- Complete preassembly shortens installation times and minimises the amount of work involved.
- Thermal insulation in EPP or mineral wool with galvanised sheet steel.
- 3D CAD drawing on request

TransShare with thermal insulation made of mineral wool and jacket made of galvanised sheet steel

Nominal pressures up to PN 10 and maximum temperatures up to 110 °C are possible

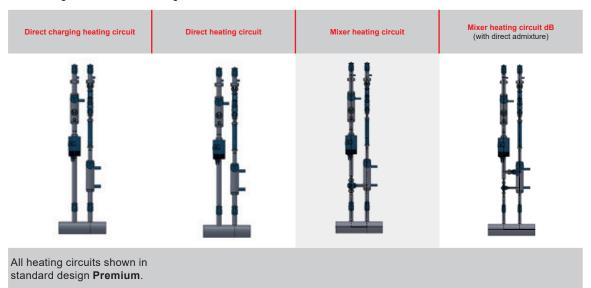
TransShare with EPP thermal insulation

Further information and prices on request

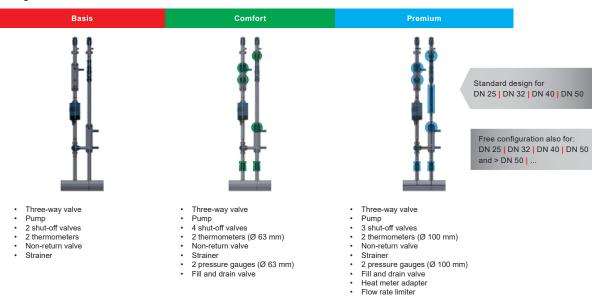
TransShare heating circuit distributor

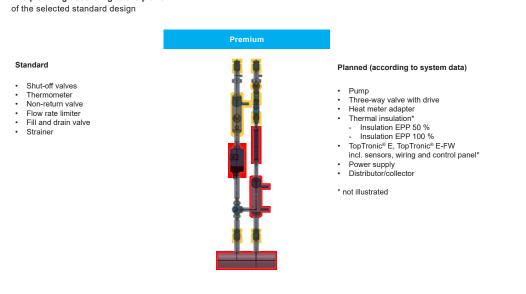
	Flow rate	Distributor	max. output at				
	V	DN	ΔT 15 K	ΔT 20 K	ΔT 25 K	ΔT 30 K	ΔT 40 K
	[m ³ /h]		[kW]	[kW]	[kW]	[kW]	[kW]
	1.49	25	25.8	34.5	43.1	51.7	68.9
	2.54	32	44.0	58.7	73.4	88.1	117.5
Freely configured	3.41	40	59.1	78.8	98.6	118.3	157.7
Freely configured	5.46	50	94.7	126.2	157.8	189.4	252.5
	9.08	65	157.5	209.9	262.4	314.9	419.9
	12.51	80	216.9	289.2	361.6	433.9	578.5
Standard design configuration	21.08	100	365.5	487.4	609.2	731.1	974.8
Freely configured	31.88	125	552.8	737.1	921.4	1105.7	1474.2
Standard design configuration	46.64	150	8.808	1078.4	1348.0	1617.6	2156.8
	78.37	200	1359.0	1812.0	2265.0	2718.0	3624.0
	124.62	250	2161.0	2881.4	3601.7	4322.1	5762.8
Freely configured	176.27	300	3056.7	4075.6	5094.5	6113.4	8151.2
	214.21	350	3714.6	4952.8	6191.0	7429.2	9905.7
	277.82	400	4817.7	6423.6	8029.5	9635.4	12847.2

Flow rate – nominal diameter – ΔT output at max. 0.65 m/s


TransShare heating circuits

	Flow rate	HC	max. output at				
	V	DN	$\Delta T 7 K$	ΔT 10 K	ΔT 15 K	ΔT 20 K	∆T 25 K
	[m ³ /h]		[kW]	[kW]	[kW]	[kW]	[kW]
	1.35	20	10.9	15.6	23.4	31.2	39.0
Ctondord docion	2.63	25	21.0	30.0	46.0	61.0	76.0
Standard design configuration	5.09	32	41.0	59.0	88.0	118.0	147.0
comiguration	6.83	40	55.0	79.0	118.0	158.0	197.0
	10.92	50	88.0	126.0	189.0	252.0	316.0
	18.17	65	147.0	210.0	315.0	420.0	525.0
	25.02	80	202.0	289.0	434.0	578.0	723.0
	42.16	100	341.0	487.0	731.0	975.0	1218.0
Freely configured	63.75	125	516.0	737.0	1105.0	1474.0	1842.0
	93.28	150	755.0	1078.0	1618.0	2157.0	2696.0
	153.74	200	1244.0	1777.0	2666.0	3555.0	4443.0
	249.24	250	2017.0	2811.0	4322.0	5763.0	7203.0


Flow rate – nominal diameter – ΔT output at max. 1.3 m/s


VERSIONS of the heating circuits in standard design

Equipment of the heating circuits, taking the example of a mixer heating circuit

The planning according to the plant

142

Domestic Hot Water

Storage tank systems ideal for commercial use

Water is hugely versatile. It provides a whole host of options for everyday use – whether as an essential, valuable resource in kitchens or in daily use in sanitary rooms and building technology due to its ability to be stored and transferred.

In all applications in which water comes into direct contact with the body, it must be supplied in the optimum quality and in sufficient quantities in line with stringent hygiene standards. These domestic hot water systems are subject to strict standards regarding planning, design and operation so as to ensure the reliable and hygienic supply of domestic water at the right temperature.

However, if the water is to be used as a storage medium to retain energy obtained from valuable resources or to hold surplus energy, this is where system requirements come to the fore. The buffer storage tanks required decouple energy generation and energy consumption in the heating system to achieve the greatest possible system efficiency. With this technical trick, it is possible to make use of the sun's energy even during the night, for example.

Hoval's domestic hot water portfolio includes:

- CombiVal
- MultiVal
- TransTherm® Aqua L/F
- EnerVal / EnerVal G / EnerVal G Cool

Hoval calorifier CombiVal CR (200-1000)

- · Calorifier made of stainless steel
- Flat section coil made of stainless steel, built in
- Thermal insulation made of polyester fleece with patented aluminium sealing bracket. Outer jacket made of polypropylene, red coloured
 (200)

(200) 1-part (300-800) 2-part (1000) 3-part

- CombiVal CR (200-500)
 - 1 $\frac{1}{2}$ " sleeve for the mounting of a screw-in electric heating element, sensor terminal bar
- CombiVal CR (800,1000)
 Flange above as additional cleaning flange (SVGW regulation) or for the installation of a flange-mounted electric heating element.
- Flange below as cleaning flange or for installation of a flange-mounted electric heating element
- · With thermometer
- · Two terminal strips for contact sensors
- Observe limit values for chloride content in domestic water see "Engineering".
- Connection cable for equipotential bonding, permanently mounted

Delivery

 Calorifier and thermal insulation completely installed (can be removed for installation)

On request

- Electric heating element
- · Electric heating element for flange above
- Flange cover with sleeve for flange below for the installation of a screw-in electric heating element
- Correx® impressed current anode set

Range CombiVal type		
CR	(200)	В
CR	(300)	В
CR	(500)	
CR	(800)	
CR	(1000)	
		$\Delta^+ \longrightarrow F$

CombiVal CR (200-1000)

Туре		(200)	(300)	(500)	(800)	(1000)
Volume	I	218	316	544	818	1042
 Max. operating/test pressure SVGW 	bar	6/12	6/12	6/12	6/12	6/12
Max. operating temperature	°C	95	95	95	95	95
Thermal insulation polyester fleece	mm	120	120	120	100	100
 Thermal insulation λ 	W/mK	0.035	0.035	0.035	0.035	0.035
Fire protection class		B2	B2	B2	B2	B2
 Heat loss at 65 °C 	W	56	67	80	136	142
Transport weight	kg	95	108	129	191	205
• U value	W/m ² K	0.315	0.472	0.423	0.483	0.459
Heating coil (built in)						
Heating surface	m^2	1.28	1.28	1.70	2.63	2.63
Heating water	I	4.1	4.1	5.1	7.4	7.4
• Flow resistance ¹⁾ water	z value	11.65	11.65	15.50	24.00	24.00
• Flow resistance ¹⁾ water/glycol 50 %	z value	15.73	15.73	20.93	32.40	32.40
Max. operating/test pressure SVGW	bar	3/6	3/6	3/6	3/6	3/6
Max. operating temperature	°C	95	95	95	95	95
• Dimensions			see	table of dimens	sions	

 $^{^{1)}}$ Flow resistance heating coil in mbar = flow rate $(m^3/h)^2$ x z (1 mbar = 0.1 kPa)

Performance figure

Selection of the storage tank type at a hot water temperature of 45 °C

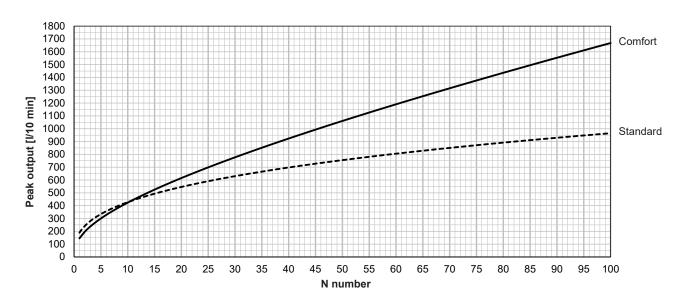
Reading example see engineering

		Comfort 1)			Standard ²)
T >	60 °C	70 °C	80 °C	60 °C	70 °C	80 °C
NL v						
1						
2						
3						
4				200		
5	200					
					200	
6 7		200				
8				300		
9	300					200
10	000		200			200
11		300	200			
12		000			300	
13						
14			300			
15						
16	500					
17	- 550					300
18						- 550
19				500		
20		500		000		
21		000				
22						
23						
24						
25					500	
26						
27			500			
28						
29						
30	800					
31						
32	1000					
33						
34						500
35						
36						
37						
38		800		800		
39						
40						
41				1000		
42		1000				
43						
44						
45						
46						
47						
48						
49					800	
50						
		<u> </u>		1		<u> </u>

		o 1)		Ctandard 2)				
		Comfort 1)		,	Standard ²	,		
T >	60 °C	70 °C	80 °C	60 °C	70 °C	80 °C		
NL v								
51								
52			800					
53								
54								
55					1000			
56								
57			1000					
58								
59								
60								
61								
62								
63								
64								
65								
66								
67								
68						800		
69								
70								
71								
72								
73								
74								
75						1000		
76								
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								
87								
88								
89								
90								
91								
92								
93								
94								
95								
96								
97								
98								
99								
100								
> 100								
7 100	l		l .	l				

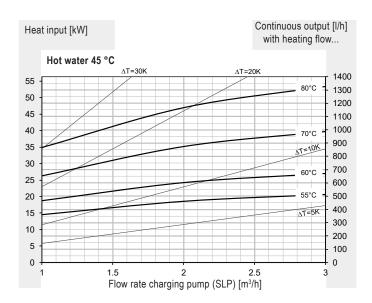
T = Heating flow

NL = Performance figure

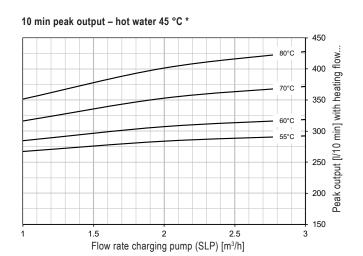

Performance figure NL acc. to DIN 4708 = number of flats which can be supplied with domestic hot water when the calorifier is heated and permanently reheated with the heat generator (standard flat: 1 bathroom – 4 rooms – 3.5 persons)

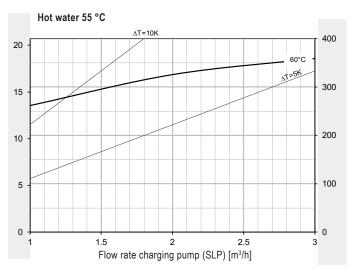
¹⁾ Calculation with simultaneity factor according to DIN 4708 (preferred for Switzerland)

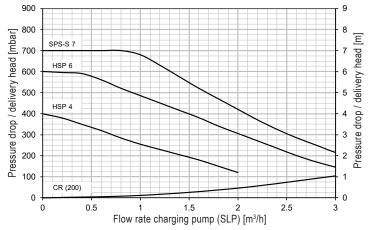
²⁾ Calculation with simultaneity factor according to Dresden Technical University

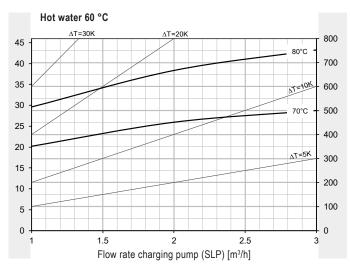

10 min peak output/N number with domestic hot water 45 $^{\circ}$ C according to DIN 4708 (Comfort) and Dresden Technical University (Standard)

Reading example see Engineering

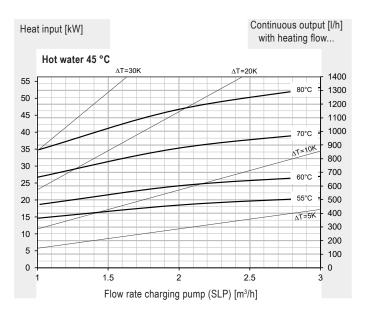


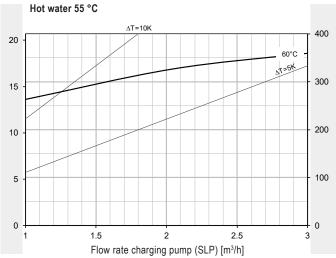

CombiVal CR (200)

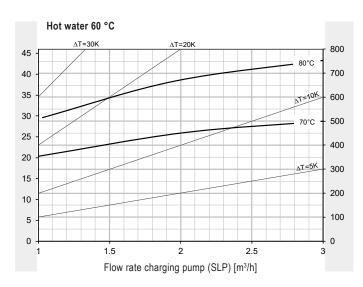

Hot water output Continuous output



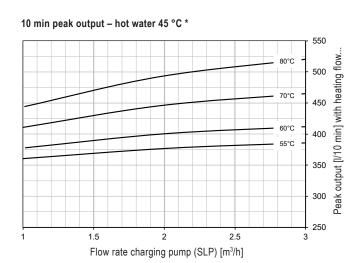
Reading example see engineering

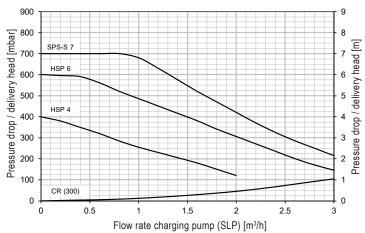




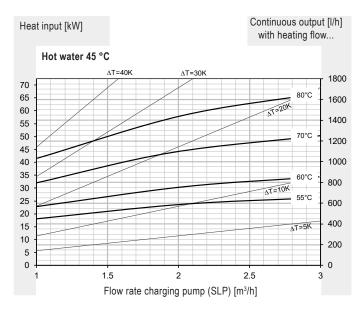

^{*} Calorifier heated to 60 °C

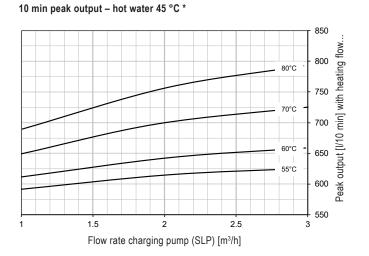
CombiVal CR (300)

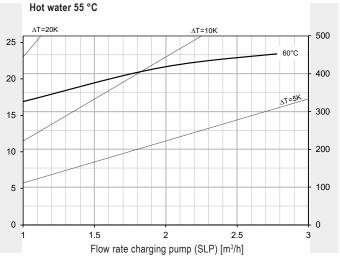

Hot water output Continuous output

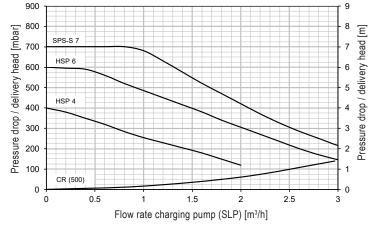


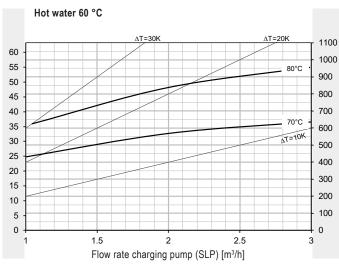
Reading example see engineering

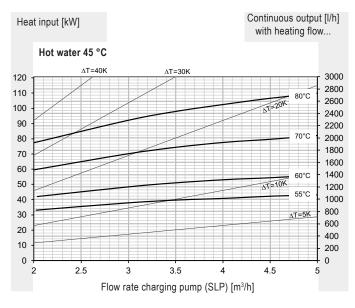


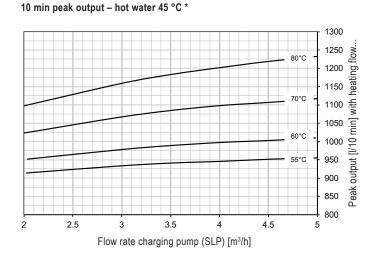

^{*} Calorifier heated to 60 °C

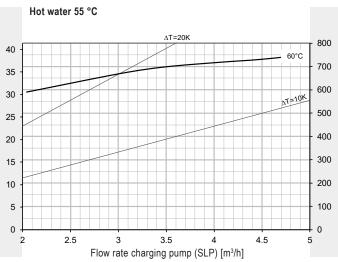

CombiVal CR (500)

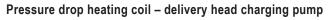

Hot water output Continuous output

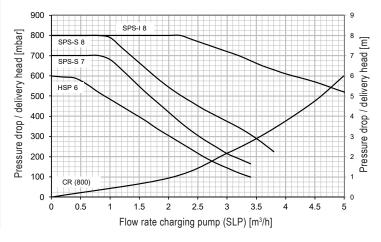

Reading example see engineering

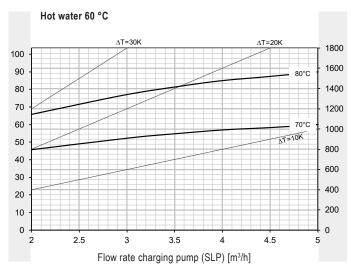

^{*} Calorifier heated to 60 °C

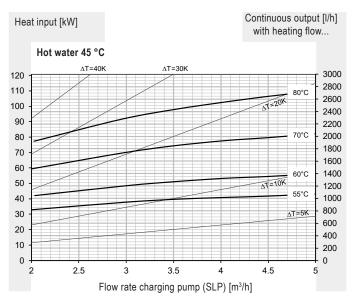


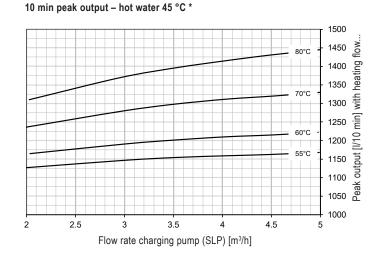

CombiVal CR (800)

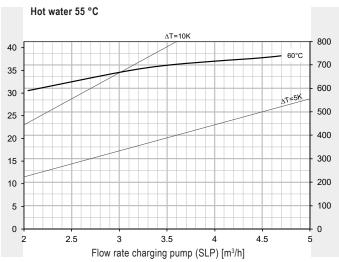

Hot water output Continuous output

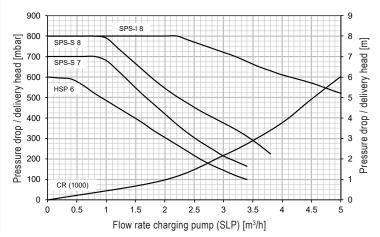


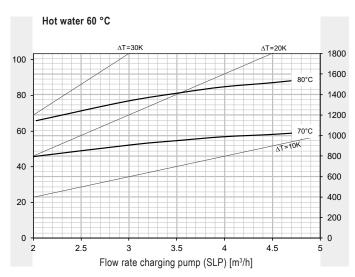


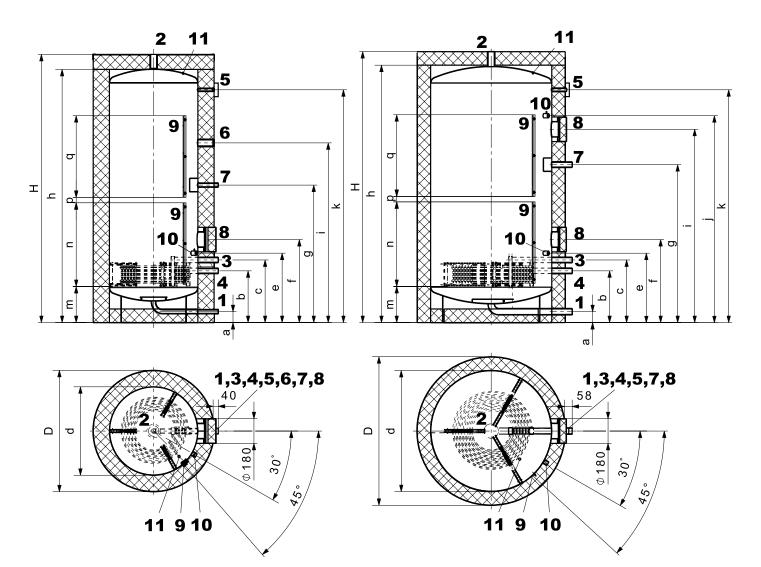



^{*} Calorifier heated to 60 °C


CombiVal CR (1000)


Hot water output Continuous output


Reading example see engineering



^{*} Calorifier heated to 60 °C

CombiVal CR (200-500)

(Dimensions in mm)

CombiVal CR (800,1000)

- Cold water
- type (200-500) type (800,1000)
- 2 Hot water
- 3 Flow heating
- 4 Return heating
- Sleeve with mounted immersion sleeve and thermometer (immersion sleeve: L = 200 mm, inner \emptyset = 8 mm)
- Connection for screw-in electric heating element
- Circulation

type (200-500) type (800,1000)

- G 1" (ET) G 1½" (ÉT) Rp 11/2" (IT) G 1¼" (ET) G 1¼" (ET)
- Rp 1/2" (IT)
- Rp 11/2" (IT) G 1" (ET) G 11/4" (ET)
- 8 Hand-hole flange (flange-mounted electric heating element) Ø 180/110 mm, pitch circle Ø 150 mm, 8 x M10
- 9 Sensor terminal bar 600 x 30 mm
 - type (200) type (300-1000)
- 10 Sleeve with grounding bolt for impressed current anode (perforated thermal insulation) type (200-800)
 - type (1000)
- 1 x 2 x

1 x

2 x

Rp 3/4" (IT)

Attention: observe the installation length

11 Equipotential bonding

Deviations possible as a result of manufacturing tolerances. Dimensions ± 10 mm

CombiVal CF type	R D	d	Н	а	b	С	е	f	g	i	j	k	m	n	р	q	Tilting dimension
(200)	790	550	1213	80	380	460	510	610	760	860	-	980	310	540	-	-	1448
(300)	740	500	1949	80	380	460	510	610	1010	1320	-	1710	310	540	100	540	2085
(500)	890	650	1970	80	380	460	510	610	1010	1320	-	1710	310	540	100	540	2162
(800)	990	790	1991	80	380	460	510	610	1160	1420	-	1710	310	540	100	540	2224
(1000)	1090	890	1991	80	380	460	510	610	1160	1420	1520	1710	310	540	100	540	2270

Hoval Calorifier CombiVal CSR (300-1000)

for combined heating

- · Calorifier made of stainless steel
- Thermal insulation made of polyester fleece with patented aluminium sealing bracket. Outer jacket made of polypropylene, red coloured

(300-800)2-part (1000)3-part

- CSR (300-500): 2 flat section coils with large heating surface made of stainless steel, built in for use with heat pumps or condensing boilers
- CSR (300-500)
 - 1 1/2" sleeve for the installation of a screw-in electric heating element, sensor terminal bar
- CSR (800-1000) 2 flat section coils of stainless steel, built in for use with heat pumps or condensing
- Flange above as additional cleaning flange (Swiss SVGW regulation) or for the installation of a flange-mounted electric heating
- Flange below as cleaning flange or for the installation as flange-mounted electric heating element
- Connection cable for equipotential bonding, permanently mounted
- Distributor bar for parallel connection of the coils
- With thermometer
- Two terminal bars for contact sensor
- Observe limit values for chloride content in domestic water - see "Engineering".

Delivery

- Calorifier and thermal insulation completely installed (can be removed for installation)
- · Distributor bar delivered in separate packaging

On request

- Flange cover with 1½" sleeve for the installation of the electric heating element
- Screw-in electric heating element
- Flange-mounted electric heating element for flange above
- Correx® impressed current anode set

Hoval Calorifier CombiVal CSR (1250-2000)

- · Calorifier made of stainless steel
- Thermal insulation made of polyester fleece with patented aluminium sealing bracket. Outer jacket made of polypropylene, red coloured (1250-2000)3-part
- Flange below as cleaning flange or for the installation of a flange-mounted electric heating element
- Flange above as additional cleaning flange (Swiss SVGW regulation) or for the installation of a flange-mounted electric heating element
- With 2 flat section coils made of stainless steel, built-in for use with heat pumps or condensing boilers
- With thermometer
- Two terminal bars for contact sensor

Range
CombiVa
type

турс		
CSR	(300)	В
CSR	(400)	В
CSR	(500)	
CSR	(800)	
CSR	(1000)	
CSR	(1250)	
CSR	(1500)	
CSR	(2000)	

 $A^+ \rightarrow F$

- · Connection cable for equipotential bonding, permanently mounted
- Distributor bar for parallel connection of the
- Observe limit values for chloride content in domestic water - see "Engineering".

Calorifier, thermal insulation and distributor bar delivered in separate packaging

On request

- Flange cover with 11/2" sleeve for the installation of the electric heating element
- Screw-in electric heating element
- Flange-mounted electric heating element for flange above
- Correx® impressed current anode set

· Installation of the thermal insulation, distributor bar

CombiVal CSR (300-2000)

Туре		(300)	(400)	(500)	(800)	(1000)	(1250)	(1500)	(2000)
Volume	1	316	439	544	818	1042	1189	1625	1958
Max. operating/test pressure SVGW	bar	6/12	6/12	6/12	6/12	6/12	6/12	6/12	6/12
 Max. operating temperature 	°C	95	95	95	95	95	95	95	95
Thermal insulation polyester fleece	mm	120	120	120	100	100	120	120	120
 Thermal insulation λ 	W/mK	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Fire protection class		B2	B2	B2	B2	B2	B2	B2	B2
 Heat loss at 65 °C 	W	67	72	80	136	142	154	176	180
Transport weight	kg	122	140	161	224	268	314	431	468
• U value	W/m ² K	0.272	0.259	0.259	0.387	0.36	0.346	0.338	0.338
Heating coil (built in)									
Heating surface	m^2	2.56	3.4	5.26	6.3	10	10	11.3	12.7
Heating water	1	7.2	9.3	13.8	16.3	25.3	25.3	28.4	31.8
• Flow resistance ¹⁾ water	z value	1.88	2.48	3.84	4.61	7.24	7.24	8.24	9.28
• Flow resistance ¹⁾ water/glycol 50 %	z value	2.54	3.35	5.18	6.22	9.37	9.37	11.12	12.53
Max. operating/test pressure SVGW	bar	3/6	3/6	3/6	3/6	3/6	3/6	3/6	3/6
Max. operating temperature	°C	95	95	95	95	95	95	95	95
Dimensions				S	ee table of	dimension	ns		

 $^{^{1)}}$ Flow resistance heating coil in mbar = flow rate (m³/h)² x z (1 mbar = 0.1 kPa)

Performance figure

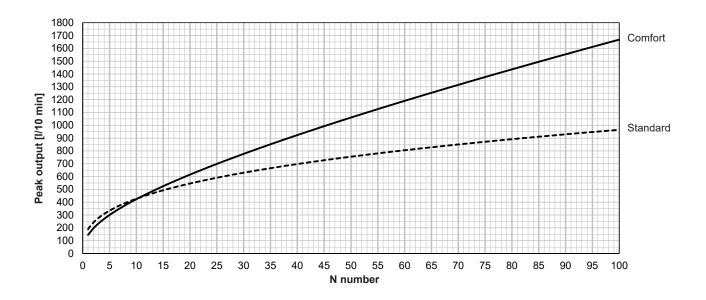
Selection of the storage tank type at a hot water temperature of 45 °C

Reading example see engineering

		Comfort 1)			Standard ²)
T >	60 °C	70 °C	80 °C	60 °C	70 °C	80 °C
NL v				- 55 5		
1						
2						
3						
4						
5						
6						
7						
8						
9						
40						
10						
11	000					
12	300			000		
13				300		
14						
15						
16						
17		300				
18						
19						
20						
21	400				300	
22			300			
23						
24						
25						
26				400		
27		400				
28						
29						
30						
31						
32						300
33	500					
34			400			
35						
36						
37						
38				500	400	
39					. 30	
40						
41		500				
42		300				
43						
44						
44						
46						
47						
48	000					
49	800					
50						

		Carrafaut 1)			Standard ²⁾			
т.		Comfort 1) 70 °C	90 00	60.00	otandard =	90.00		
T >	60 °C	70 °C	80 °C	60 °C	70 °C	80 °C		
NL v								
51			500					
52								
53						400		
54								
55								
56					500			
57								
58								
59								
60								
61								
62								
63								
64				800				
65				000				
66								
67								
68								
69								
70		800						
71	1000							
72								
73								
74								
75								
76	1250					500		
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								
87								
88								
89								
90								
91								
92					800			
93								
94	1500			1000				
95								
96								
97								
98			800					
99			000					
100								
	2000	1000	1000	1250	1000	900		
> 100	2000	1000	1000	1250	1000	800		
		1250	1250	1500	1250	1000		
		1500	1500	2000	1500	1250		
		2000	2000		2000	1500		
	1			I	l	2000		

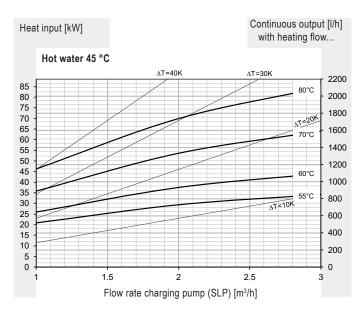
T = Heating flow

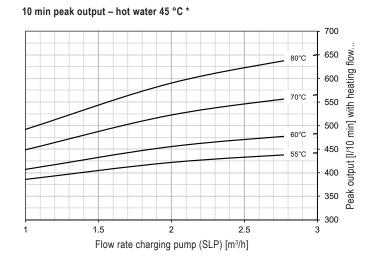

NL = Performance figure

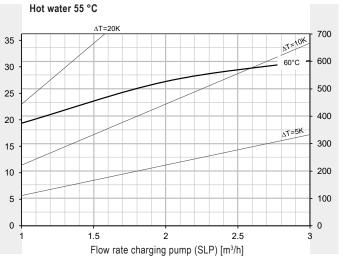
Performance figure NL acc. to DIN 4708 = number of flats which can be supplied with domestic hot water when the calorifier is heated and permanently reheated with the heat generator (standard flat: 1 bathroom – 4 rooms – 3.5 persons)

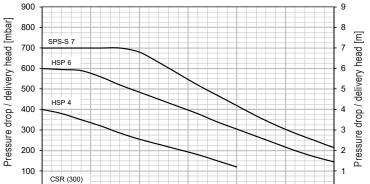
¹⁾ Calculation with simultaneity factor according to DIN 4708 (preferred for Switzerland) 2) Calculation with simultaneity factor according to Dresden Technical University

10 min peak output/N number with domestic hot water 45 $^{\circ}$ C according to DIN 4708 (Comfort) and Dresden Technical University (Standard)

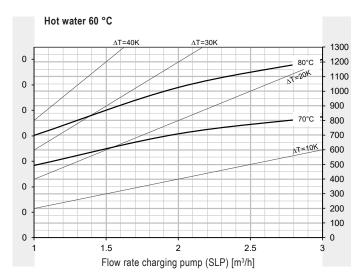

Reading example see Engineering




CombiVal CSR (300)


Hot water output Continuous output

Reading example see engineering

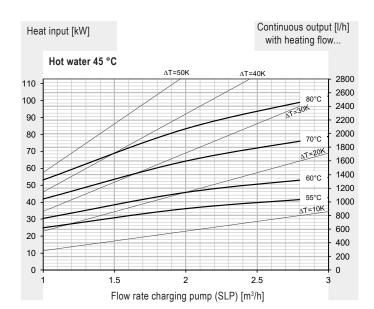

1.5

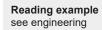
Flow rate charging pump (SLP) [m³/h]

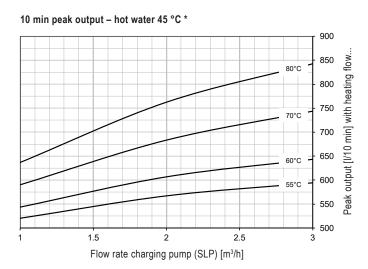
2.5

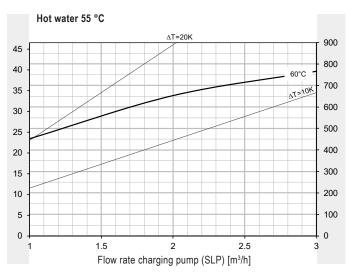
3

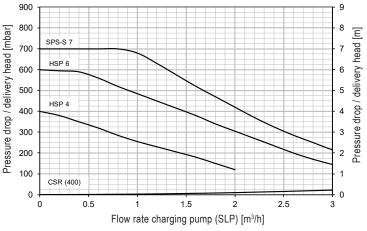
Pressure drop heating coil - delivery head charging pump

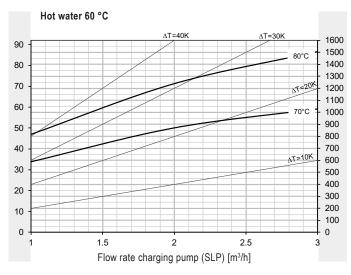

^{*} Calorifier heated to 60 °C

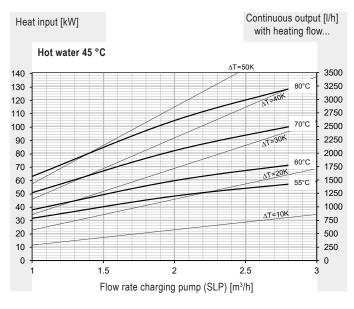

0.5

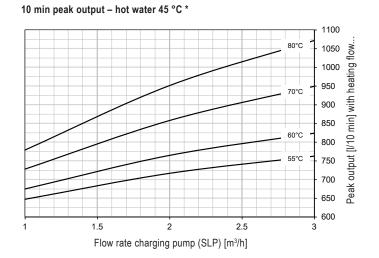


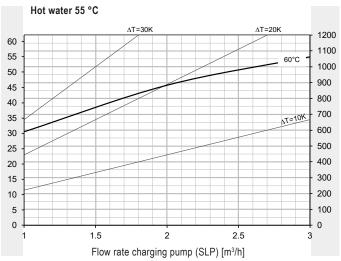

CombiVal CSR (400)

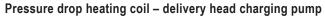

Hot water output Continuous output

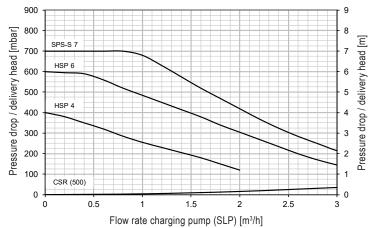


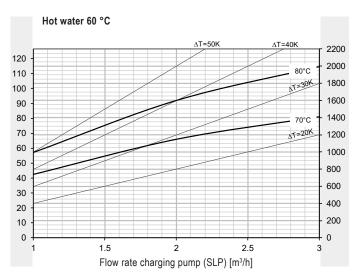


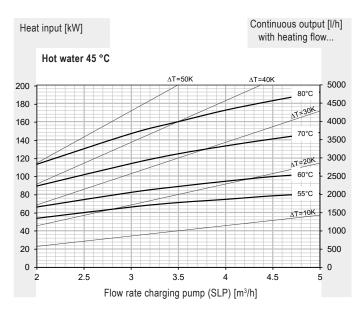

^{*} Calorifier heated to 60 °C


CombiVal CSR (500)


Hot water output Continuous output

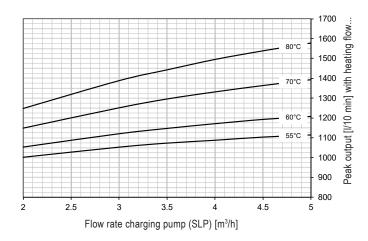

Reading example see engineering

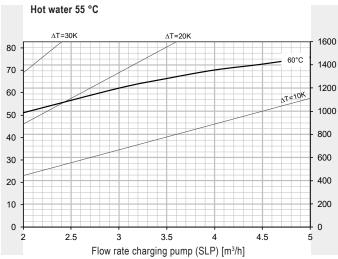


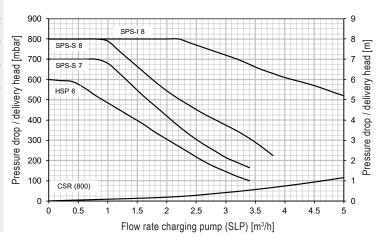


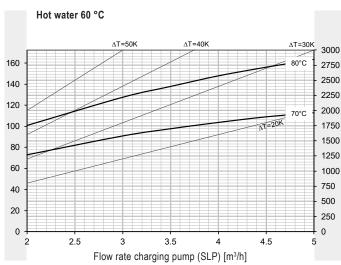
^{*} Calorifier heated to 60 °C

CombiVal CSR (800)

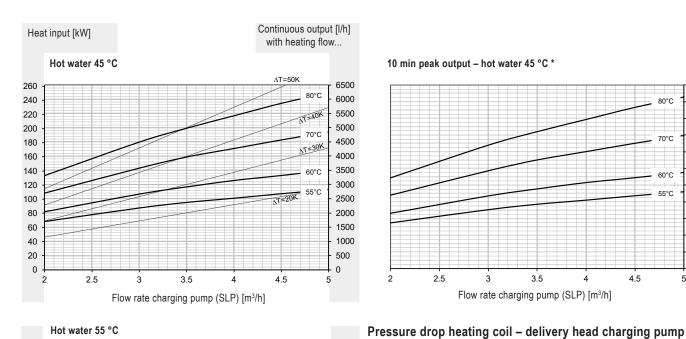

Hot water output

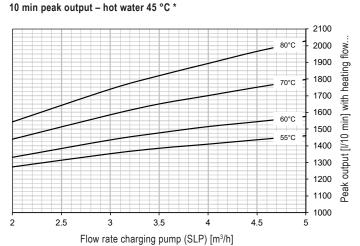


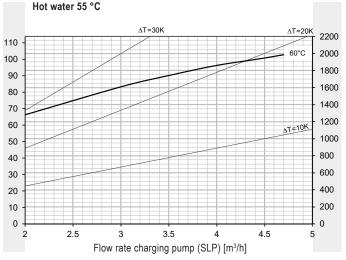


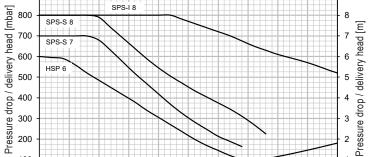

Reading example see engineering

10 min peak output - hot water 45 °C *



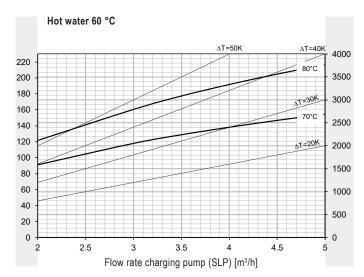

^{*} Calorifier heated to 60 °C


CombiVal CSR (1000)


Hot water output Continuous output

Reading example see engineering

Flow rate charging pump (SLP) [m³/h]

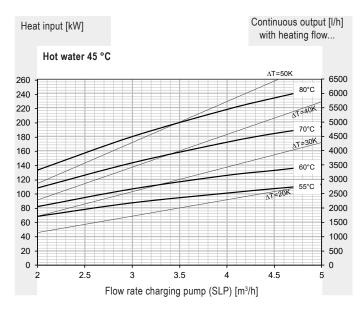

4.5

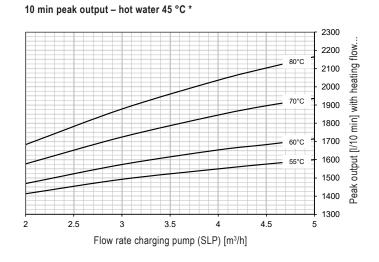
900

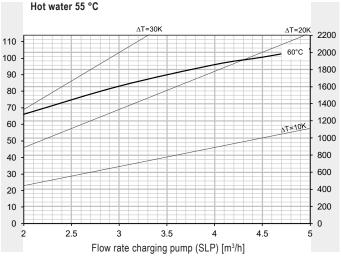
100

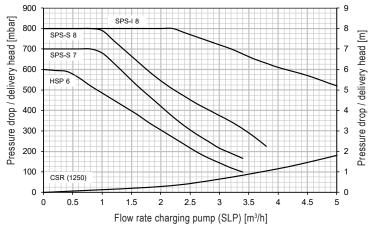
CSR (1000)

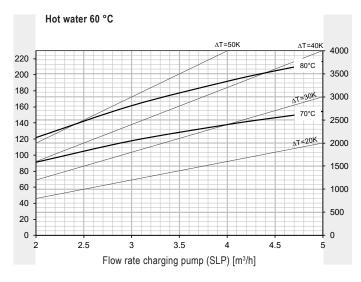
0.5

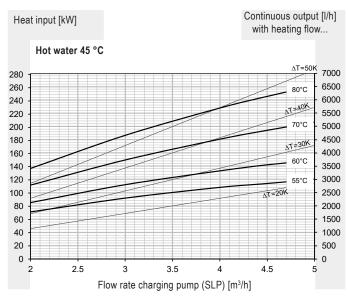

^{*} Calorifier heated to 60 °C

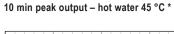


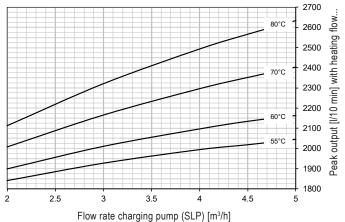

CombiVal CSR (1250)

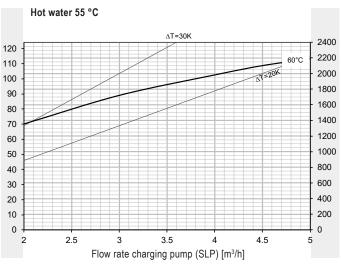

Hot water output Continuous output

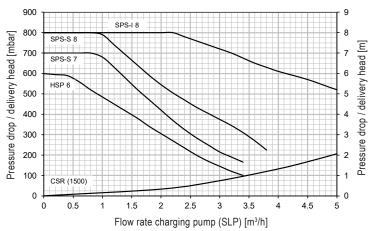

Reading example see engineering

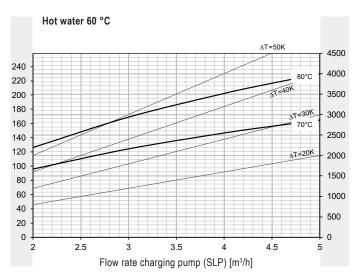


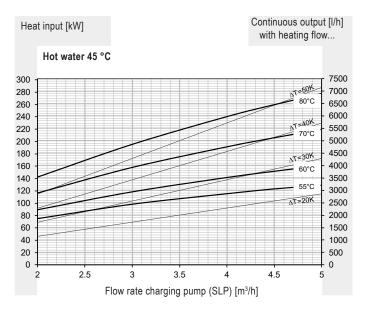

^{*} Calorifier heated to 60 °C

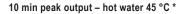

CombiVal CSR (1500)

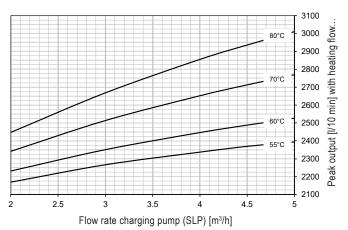

Hot water output Continuous output

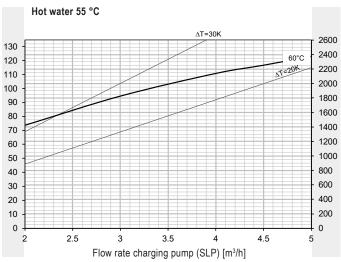

Reading example see engineering

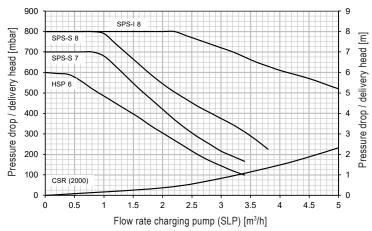


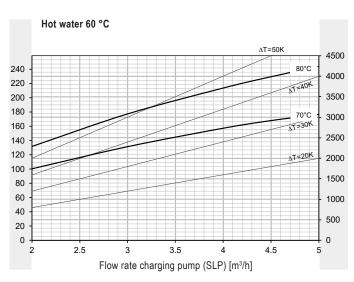

^{*} Calorifier heated to 60 °C

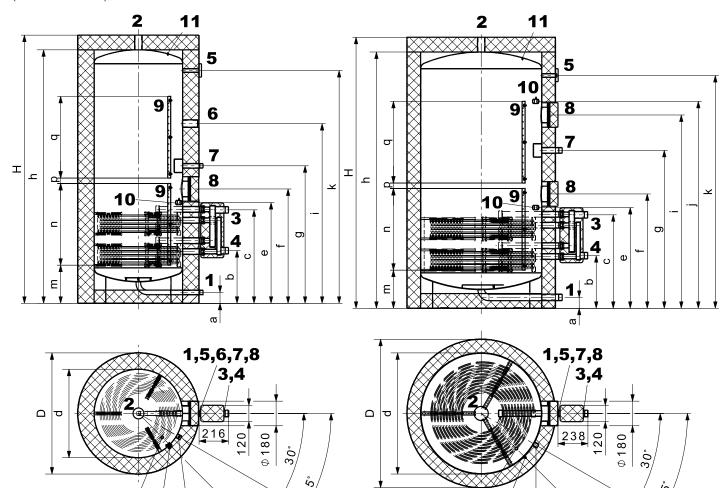

CombiVal CSR (2000)


Hot water output


Continuous output




Reading example see engineering



^{*} Calorifier heated to 60 °C

CombiVal CSR (300-500)

(Dimensions in mm)

CombiVal CSR (800-2000)

- Cold water
- 2 Hot water
- Flow heating 3 4 Return heating
- Sleeve with mounted immersion sleeve and thermometer

(immersion sleeve: L = 200, inner \emptyset = 8 mm)

Connection for screw-in electric heating element

9

10

Circulation

type (300-500) type (800-1250) type (1500,2000)

type (300-500)

type (800-2000)

- G 1" (ET) G 11/2" (ET) Rp 11/2" (IT)
- R 1½" (ET) R 1½" (ET) Rp 1/2" (IT)

Rp 11/2" (IT) G 1" (ET) G 11/4" (ET) G 11/2" (ET)

- Hand-hole flange (flange-mounted electric heating element) Ø 180/110 mm, pitch circle Ø 150 mm, 8 x M10
- Sensor terminal bar 600 x 30 mm

11

9

Sleeve with grounding bolt for impressed current Rp 3/4" (IT) anode (perforated thermal insulation) type (300-800) type (1000-2000) 2 x

10

Attention: observe the installation length

Equipotential bonding

Deviations possible as a result of manufacturing tolerances. Dimensions ± 10 mm

CombiVal type CSR	D	d	Н	а	b	С	е	f	g	i	j	k	m	n	р	q	Tilting dimension
(300)	740	500	1949	80	380	690	740	840	1010	1320	-	1710	310	540	100	540	2085
(400)	840	600	1885	80	380	690	740	840	1010	1320	-	1630	310	540	100	540	2064
(500)	890	650	1970	80	380	690	740	840	1010	1320	-	1710	310	540	100	540	2162
(800) (1000)	990 1090	790 890	1991 1991	80 80	380 380	690 690	740 740	840 840	1160 1160	1420 1420	- 1520	1710 1710	310 310	540 540	100 100	540 540	2224 2270
(1250) (1500)	1190 1340	950 1100	1997 2012	80 80	380 380	690 690	740 740	840 840	1160 1160	1420 1420	1520 1520	1710 1710	310 310	540 540	100 100	540 540	2325 2417
(2000)	1440	1200	2046	80	380	690	740	840	1160	1420	1520	1710	310	540	100	540	2502

MultiVal CRR (1000)

Hoval calorifier MultiVal CRR (500-1000)

- · Calorifier made of stainless steel
- Thermal insulation made of polyester fleece with patented aluminium sealing bracket.
 Outer casing made of polypropylene, red coloured

(500,800) 2-part (1000) 3-part

MultiVal CRR (500)

1½" sleeve for the installation of a screw-in electric heating element

MultiVal CRR (800,1000)

Flange above as additional cleaning flange (Swiss SVGW regulation) or for the installation of a flange-mounted electric heating element

- Flange below as cleaning flange or for installation of a flange-mounted electric heating element
- · With thermometer
- · With immersion sleeve
- · Two terminal strips for contact sensors
- 2 flat section coils made of stainless steel, built in
 - below for the alternative use as flat register at (800,1000)
 - above for supplemental heating with oil, gas or wood boiler
- Connection cable for equipotential bonding, permanently mounted
- Observe limit values for chloride content in domestic water see "Engineering".

Delivery

 Calorifier and thermal insulation completely installed (can be removed for installation)

On request

- · Screw-in electric heating element
- Flange-mounted electric heating element for upper flange
- Flange cover with sleeve to the lower flange for the installation of a screw-in electric heating element
- Correx® impressed current anode set

Range MultiVal type CRR (500) CRR (800) CRR (1000)

MultiVal CRR (500)

Screw-in electric heating element Type EP 2.5 to EP 5

- Made of Incoloy® alloy 825
- Heat input 2.35 to 4.9 kW
- Incl. temperature control and safety temperature limiter
- Connection:
 EP 2.5: 3 x 400 V (1 x 230 V)
 EP 3.5 and EP 5: 3 x 400 V
- · Not suitable for exclusively electric heating

Delivery

· Delivered separately packed

On site

• Installation of the electric heating element

Flange-mounted electric heating elements Type EFHK-C 4 to EFHK-C 9

- Made of Incoloy® alloy 825
- Heat output 4.0 to 9.0 kW, according to the regulation of the current supplier
- With temperature regulation and safety temperature limiter
- Connection 3 x 400 V
- · Not suitable for exclusively electric heating

Delivery

Delivered separately packed

On site

Mounting of thermal insulation

Calorifier

MultiVal CRR (500-1000)

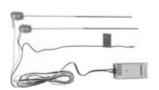
With integrated flat section coils made of stainless steel.

MultiVal CRR	Volume	Heating	surface
		top	bottom
type	dm³	n	n²
(500)	544	1.28	1.70
(800)	818	1.28	2.63
(1000)	1042	1.28	2.63

Notice

The connections must only be designed in stainless steel; if not, suitable isolating or bridging connectors (or MEPLA pipe transition pieces) must be used.

When using insulating or bridging connectors (galvanic isolation), the earth cable


tors (galvanic isolation), the earth cable attached to the calorifier must not be connected. When using galvanised circulation pipes, a backwash filter must be installed.

Electric heating elements

see chapter "Electric heating elements"

Accessories

Kit Correx® impressed current anode UP1.9-924-L395/1

for long-term corrosion protection for installation in the stainless steel calorifier with reduction R 1½" - Rp $^3\!4$ " Installation length: 395 mm

Connection cable length: 1 x 3500 mm 1 Correx® impressed current anode (up to 800 l)

Kit Correx® impressed current anode UP1.9-924-L395/2

for long-term corrosion protection for installation in the stainless steel calorifier

Installation length: 395 mm Connection cable length: 2 x 2000 mm 2 Correx® impressed current anodes (from 1000 l) Part No.

7014 794 7014 795 7014 796

6031 813

6052 439

MultiVal CRR (500-1000)

Туре		(500)	(800)	(1000)
Volume	I	544	818	1042
Max. operating/test pressure SVGW	bar	6/12	6/12	6/12
Max. operating temperature	°C	95	95	95
Thermal insulation polyester fleece	mm	120	100	100
 Thermal insulation λ 	W/mK	0.035	0.035	0.035
Fire protection class		B2	B2	B2
Heat loss at 65 °C	W	80	136	142
Transport weight	kg	145	205	219
• U value	W/m ² K	0.259	0.437	0.360
Heating coil bottom (built in)		fla	t section coil for solar ι	ise
Heating surface	m^2	1.70	2.63	2.63
Heating water	1	5.10	7.40	7.40
• Flow resistance ¹⁾ water	z value	15.50	24.00	24.00
• Flow resistance ¹⁾ water/glycol 50 %	z value	20.93	32.40	32.40
Max. operating/test pressure SVGW	bar	3/6	3/6	3/6
Max. operating temperature	°C	95	95	95
• For flat collectors up to ²⁾	m^2	8	12	16
Heating coil top (built in)		flat section	on coil for supplementa	l heating
Heating surface	m²	1.28	1.28	1.28
Heating water	1	4.10	4.10	4.10
• Flow resistance ¹⁾ water	z value	11.65	11.65	11.65
Max. operating/test pressure SVGW	bar	3/6	3/6	3/6
Max. operating temperature	°C	95	95	95
Dimensions		:	see table of dimensions	5

 $^{^{1)}}$ Flow resistance heating coil in mbar = flow rate $(m^3/h)^2$ x z (1 mbar = 0.1 kPa)

²⁾ Collector surface, related to the heat exchanger heating surface only

Performance figure

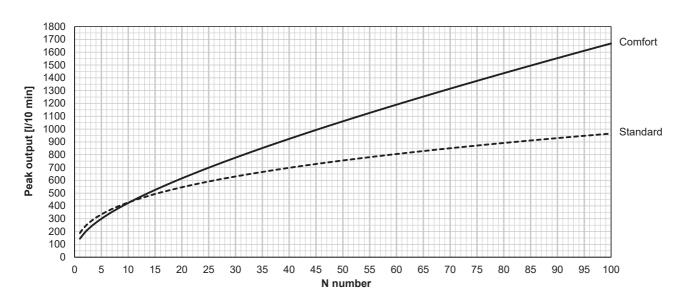
Selection of the storage tank type at a hot water temperature of 45 °C

Reading example see engineering

		Comfort 1)		Standard ²⁾				
T >	60 °C	70 °C	80 °C	60 °C	70 °C	80 °C		
NL V	00 C	70 0	00 C	00 C	70 0	00 C		
1								
3								
4								
4								
5								
6				=00				
7	=00			500				
8	500							
9								
10		500			500			
11								
12								
13	800		500					
14	1000					500		
15				800				
16		800						
17				1000				
18		1000						
19					800			
20								
21								
22			800		1000			
23								
24			1000					
25								
26								
27								
28						800		
29						000		
30						1000		
31						1000		
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								
50								
	_	_		_	_	_		

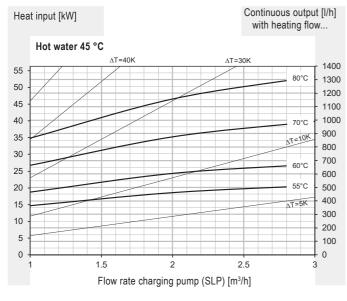
		0 (1)		Standard ²⁾						
	CO 9O	Comfort ¹⁾ 70 °C	00.00	Standard 90 °C						
T >	60 °C	70°C	80 °C	60 °C	70 °C	80 °C				
NL V										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										
62										
63										
64										
65										
66										
67 68										
69										
70 71										
72										
73										
74										
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
100										
> 100				1						
7 100		I	I	<u> </u>		I				

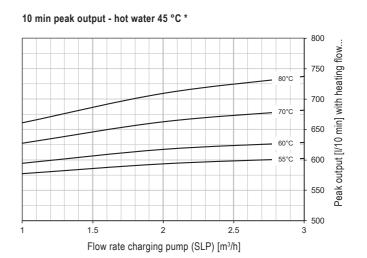
T = heating flow NL = performance figure

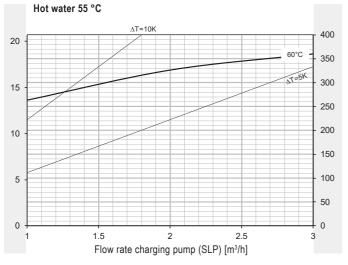

and permanently reheated with the heat generator (standard flat: 1 bathroom - 4 rooms - 3.5 persons)

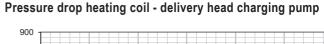
1) Calculation with simultaneity factor according to DIN 4708 (preferred for Switzerland)

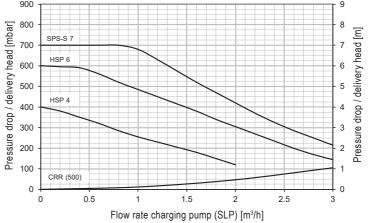
²⁾ Calculation with simultaneity factor according to Dresden Technical University

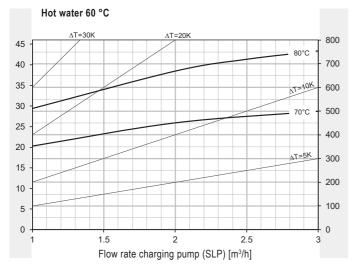

Reading example see Engineering




MultiVal CRR (500)

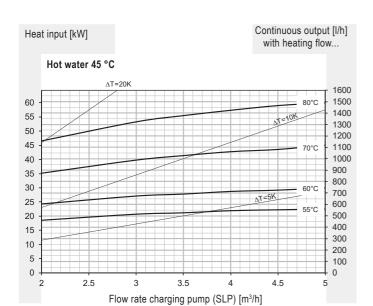

Hot water output Continuous output

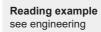

Reading example see engineering

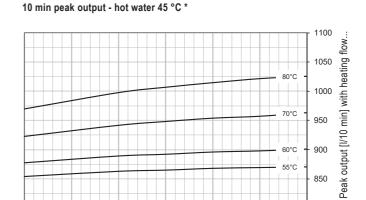


^{*} Calorifier heated to 60 °C

800

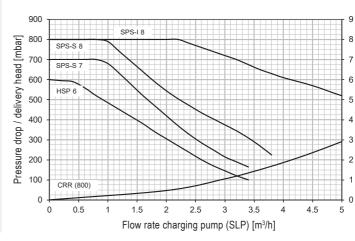

Pressure drop / delivery head [m]

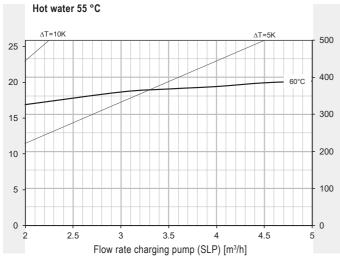

5


4.5

MultiVal CRR (800)

Hot water output Continuous output

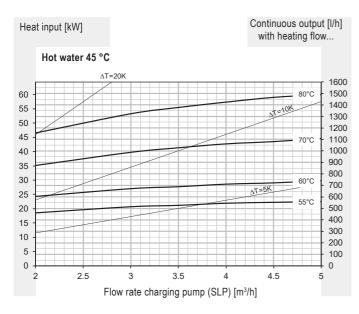

Pressure drop heating coil - delivery head charging pump

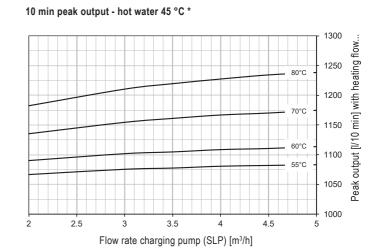

3.5

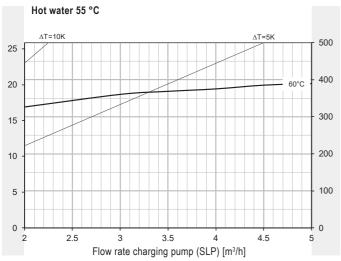

Flow rate charging pump (SLP) [m³/h]

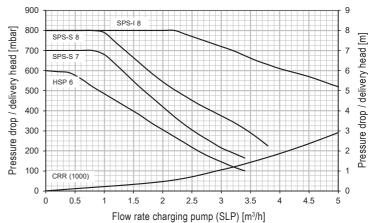
3

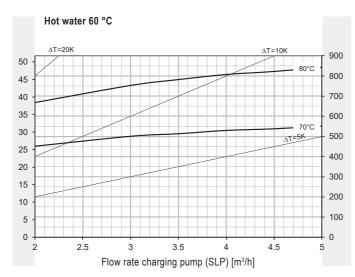
2.5

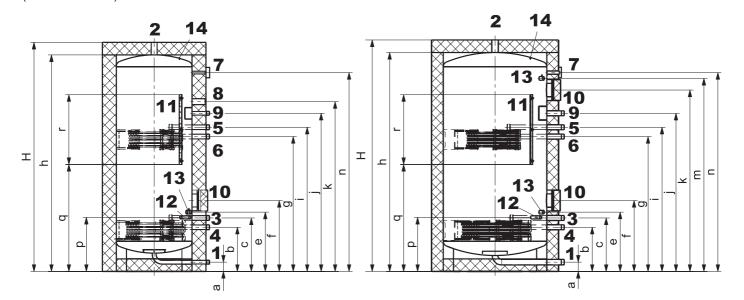


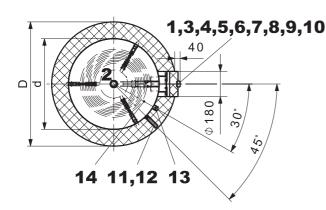

^{*} Calorifier heated to 60 °C

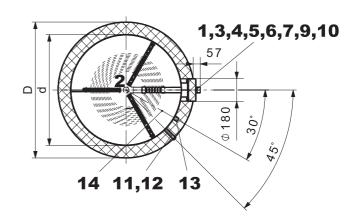

MultiVal CRR (1000)


Hot water output Continuous output


Reading example see engineering






^{*} Calorifier heated to 60 °C

MultiVal CRR (500) (Dimensions in mm)

MultiVal CRR (800,1000)

1	Cold water	type (500) type (800,1000)	G 1" (ET) G 1½" (ET)
2	Hot water	, , ,	Rp 1½" (IT)
3	Flow solar circuit		G 11/4" (ET)
4	Return solar circuit		G 11/4" (ET)
5	Flow re-heating		G 11/4" (ET)
6	Return re-heating		G 11/4" (ET)
7	Sleeve with mounted immersion		
	sleeve and thermometer		Rp 1/2" (IT)
	(immersion sleeve: L = 200, inne	er Ø = 8 mm)	
8	Connection for screw-in electric	heating element	Rp 1½" (IT)
9	Circulation	type (500)	G 1" (ET)
		type (800,1000)	G 1¼" (ET)

- Hand-hole flange (flange-mounted electric heating element) Ø 180/110 mm, pitch circle Ø 150 mm, 8 x M10
- 11 Sensor terminal bar 600 x 30 mm
- 12 Sleeve with mounted immersion sleeve for sensor, thermostat Rp ½" (IT) (immersion sleeve: L = 200, inner Ø = 8 mm)
- 13 Sleeve with grounding bolt for impressed current anode (perforated thermal insulation) type (500) 1 x type (1000) 2 x

Attention: observe the installation length

14 Equipotential bonding

Deviations possible as a result of manufacturing tolerances. Dimensions +/- 10 mm

MultiVal type	D	d	Н	h	а	b	С	е	f	g	i	j	k	m	n	р	q	r	Tilting dimension
CRR (500)	890	650	1970	1862	80	380	460	510	610	1160	1240	1360	1460	-	1710	465	950	540	2162
CRR (800)	990	790	1991	1883	80	380	460	510	610	1160	1240	1360	1560	-	1710	465	950	540	2224
CRR (1000)	1090	890	1991	1883	80	380	460	510	610	1160	1240	1360	1560	1660	1710	465	950	540	2270

Calorifier charging system

Calorifier charging system

Consisting of:

- calorifier charging module TransTherm[®] aqua L
- TransTherm® aqua L-FW (for indirect connection to the (district) heating network)
- hot water charging tank CombiVal E or CombiVal C (optional)

Calorifier charging module TransTherm® aqua L

- Fully assembled station with plate heat exchanger for the provision of domestic hot water using the tank storage principle
- · Intended for wall installation
- The primary side (heating side) contains the three-way valve, high-efficiency pump, air-bleeding, contact sensor and the filling and drain valve, line balancing valve. These components ensure a constant flow temperature at the plate heat exchanger. Pipes made from steel
- The secondary side (DHW side) contains the safety valve (10 bar), non-return valve, filling/drain valves and balancing valve.
 A flow sensor ensures the correct charging temperature for the hot process water storage tank. Pipes made from stainless steel
- Stainless steel plate heat exchanger 1.4404, copper-soldered or copper-free
- EPP insulation, 30 mm, for the heat exchanger
- Switch-on and switch-off of the charging pump is regulated via two sensors (included in the scope of delivery) in the storage tank.
- Mount tank sensor on the tank on site and connect it to the controller
- T-piece with dummy plug for on-site connection of the circulation group. Connect the pump to the controller on site.
- TopTronic® E control with integrated thermal disinfection of the DHW storage tank (antilegionella circuit)

Calorifier charging module TransTherm® agua L-FW

- Fully assembled station with plate heat exchanger for the provision of domestic hot water using the tank storage principle
- · Intended for wall installation
- The primary side (heating side) includes a flow rate controller with through valve and safety function, ventilation, sensor and fill/ drain valve.
 - These components ensure a constant flow temperature at the plate heat exchanger. Pipes made from steel
- The secondary side (DHW side) contains the safety valve (10 bar), non-return valve, filling/drain valves and balancing valve.
 A flow sensor ensures the correct charging temperature for the hot process water storage tank. Pipes made from stainless steel
- Stainless steel plate heat exchanger 1.4404, copper-soldered or copper-free
- EPP insulation, 30 mm, for the heat exchanger
- Switch-on and switch-off of the charging pump is regulated via two sensors (included in the scope of delivery) in the storage tank.
- Mount tank sensor on the tank on site and connect it to the controller

Range Calorifier charging module

TransTherm® aqua L type	Output kW
(1-10)	50
(1-16)	90
(1-20)	115
(1-30)	175
(1-40)	230
(1-50)	275

Calorifier charging module

type	kW
(2-10)	50
(2-16)	90
(2-20)	115
(2-30)	175
(2-40)	230
(2-50)	275

- T-piece with dummy plug for on-site connection of the circulation group. Connect the pump to the controller on site.
- TopTronic® E control with integrated thermal disinfection of the DHW storage tank (anti-legionella circuit)

Delivery

 The storage tank required is not included in the scope of delivery

On site

- Installation of a circulation unit; the necessary connection is provided.
- · Electrical connection of the controller

Heating network

- · Nominal pressure: 16 bar
- Maximum pressure: 13 bar
- · Min. differential pressure: 0.6 bar
- Max. differential pressure: 12 bar
- Operating temperature: 70 ... 110 °C
- Maximum temperature: 120 °C

Suitable hot water charging tanks see next page

301
475
747
968
1472
2000

CombiVal C Content (200)212 289 (300)411 (400)(500)490 (750)756 (1000)990 (1500)1415

1975

2450

TopTronic® E controller

TopTronic® E basic module district heating/ fresh water

(2000)

(2500)

- Control unit for controlling district heating transfer stations in non-communicative networks and the corresponding consumers with integrated control functions for
- primary valve control
- cascade management
- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 hot water charging circuit
- various additional functions
- Various functions for hot water:
 selection of different basic pr
 - selection of different basic programs (week programs, economy mode, holiday until, etc.)
 - various operating modes (e.g. accumulator priority or parallel mode)
 - buffer storage circuit on the primary or secondary side
 - adjustable loading criteria (e.g. adjustable loading times, undershooting the minimum nominal value, etc.)
- adjustable switch-off criteria (e.g. achieving the setpoint valve, achieving the lower sensor setpoint value, etc.)
- adjustable loading block (if the loading flow temperature is too low, the setpoint temperature is not reached, differential temperature-dependent solar circuit control)

Calorifier charging system

- Definable switching times for recirculation pump control
- · Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Complete plug set for DH module
- RPM-regulated pumps

No further module expansions or controller modules can be installed in the control panel!

Option

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programs
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

Notice

The TopTronic® E control module for operating the basic module district heating/fresh water must be ordered separately!

Further information about the TopTronic® E see "Controls"

Delivery

 All armatures required for operation, such as flow balancing and shut-off valves, backflow preventer, air-bleeding and drain valve are fitted.

Caution

As a result of thermal disinfection of the domestic hot water for legionella protection, increased water temperatures (at least 65 ... 70 °C) occur. Depending on the water quality, this may result in increased calcification at the installed armatures and heat exchangers and also brings the risk of scalding at the tapping points. Corresponding protective measures must be implemented on site.

CombiVal C (200-2500)

- Charging tank made from stainless steel (without built-in heating coil) for combination with calorifier charging module TransTherm® aqua L
- (200-1000) with one flange (1500-2000) with two flanges (2500) with one manhole in each case with installed dummy flange plate for maintenance or, for types (200-2000), installation of a flange-mounted electric heating element
- Thermal insulation: Neodul® insulation (EPS rigid foam outside and 20 mm polyester fibre fleece inside) with zip, outer jacket made of polypropylene, colour red (200-1000) 2-piece (1500) 3-piece (2000-2500) 4-piece
- Thermometer incl. immersion sleeve loose (packed with the product)
- · Sensor terminal bar
- Observe limit values for chloride content in domestic water see "Engineering".

Delivery

- (200-1000) with thermal insulation completely installed (can be removed for bringing in)
- (1500-2500) thermal insulation separately packed

Design on request

 (200-2000) Flange-mounted electric heating element

On site

- Installation of immersion sleeve for thermometer
- (1500-2500) Installation of the thermal insulation and attaching the protection rosettes

CombiVal E (300-2000)

- Charging tank made of steel, enamelled inside (without built-in heating coil) for combination with calorifier charging module TransTherm® aqua L
- (300-1000) with one flange (1500,2000) with two flanges in each case with installed dummy flange plate for maintenance or installation of a flange-mounted electric heating element
- (300-1000) one built-in magnesium protection anode (1500,2000) two built-in magnesium protection anodes
- Thermal insulation made of
- (300,500) polyurethane rigid foam, directly foamed, with dismantable foil jacket,
 1-part, red coloured
- (800-2000) polyester fleece with foil jacket, completely removable, red coloured (800-1500) 2-part (2000) 3-part
- · With thermometer
- (300,500) sensor channel (800-2000) two terminal bars for contact sensor

Delivery

- · (300,500) with foil jacket completely installed
- (800-2000) with thermal insulation completely installed (removable)

Design on request

· Flange-mounted electric heating element

On site

- · Installation of the thermometer
- Attachment of the glue-on protection rosettes to the thermal insulation

Water quality

see end of this brochure

Calorifier charging module

TransTherm® aqua L

Fully assembled station with plate heat exchanger for the provision of domestic hot water using the storage tank charging principle and built-in Hoval TopTronic® E control The required storage tank is not supplied.

TransTherm® aqua L	Output kW
(1-10)	50
(1-16)	90
(1-20)	115
(1-30)	175
(1-40)	230
(1-50)	275

Version with copper-free heat exchanger

TransTherm® aqua L

with copper-free heat exchanger

TransTherm® aqua L	Output
	kW
(1-10)	50
(1-16)	90
(1-20)	115
(1-30)	175
(1-40)	230
(1-50)	275

Part No.

8005 869

8006 496

Hot water charging tank

CombiVal E Enamelled charging tank (without heating coil)

CombiVal E (300-1000) with one flange CombiVal E (1500,2000) with two flanges

- (300,500) thermal insulation mounted with foil jacket
- (800-2000) Thermal insulation completely installed (removable)

CombiVal ype	Content I
≣ (300)	301
E (500)	475
∃ (800)	747
∃ (1000)	968
∃ (1500)	1472
≣ (2000)	2000

Part No.

CombiVal C Stainless steel charging tank

(without heating coil)
CombiVal C (200-1000) with one flange
CombiVal C (1500-2000) with two flanges
CombiVal C (2500) with one manhole thermal

- (200-1000) completely installed (removable) (1500-2000) separately packed

CombiVal	Content
type	I
C (200)	212
C (300)	289
C (400)	411
C (500)	490
C (750)	756
C (1000)	990
C (1500)	1415
C (2000)	1975
C (2500)	2450

6049	693
6049	694
6049	695
6049	696
6049	697
6049	698
6049	699
6049	700
6049	701

Energy efficiency class

see "Description"

Electric heating elements

see chapter "Electric heating elements"

Performance data

TransTherm® aqua L (1-10 to 1-50) / TransTherm® aqua L-FW (2-10 to 2-50)

Flow temperature heating water

	TransTherm® aqua L TransTherm® aqua L-FW	55 °C (1)						60 °C (1)					
Domestic water secondary		(10)	(16)	(20)	(30)	(40)	(50)	(10)	(16)	(20)	(30)	(40)	(50)
60/5 °C	T return primary °C	-	-	-	-	-	-	-	-	-	-	-	-
	V primary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
	Q max. kW	-	-	-	-	-	-	-	-	-	-	-	-
	V secondary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
60/10 °C	T return primary °C	-	-	-	-	-	-	-	-	-	-	-	-
	V primary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
	Q max. kW	-	-	-	-	-	-	-	-	-	-	-	-
	V secondary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
60/15 °C	T return primary °C	-	-	-	-	-	-	-	-	-	-	-	-
	V primary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
	Q max. kW	-	-	-	-	-	-	-	-	-	-	-	-
	V secondary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
60/20 °C	T return primary °C	-	-	-	-	-	-	-	-	-	-	-	-
	V primary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
	Q max. kW	-	-	-	-	-	-	-	-	-	-	-	-
	V secondary m³/h	-	-	-	-	-	-	-	-	-	-	-	-
55/5 °C	T return primary °C	-	-	-	-	-	-	30	30	30	30	30	30
	V primary m³/h	-	-	-	_	_	_	1.25	2.04	2.51	3.71	4.76	5.66
	Q max. kW	-	-	-	-	-	_	43	70	86	127	163	194
	V secondary m³/h	_	_	_	_	_	_	0.74	1.2	1.48	2.18	2.8	3.33
55/10 °C	T return primary °C	_	_	-	_	-	-	30	30	30	30	30	30
	V primary m³/h	_	_	_	_	_	_	1.11	2.04	2.51	3.71	4.76	5.63
	Q max. kW	_	_	_	_	_	_	38	70	86	127	163	193
	V secondary m³/h	_	_	_	_	_	_	0.73	1.34	1.64	2.43	3.12	3.69
55/15 °C	T return primary °C	-	-	_	_	-	-	30	30	30	30	30	30
	V primary m³/h	_	_	_	_	_	_	0.76	1.46	1.95	3.06	4.23	5.4
	Q max. kW	_	_	_	_	_	_	26	50	67	105	145	185
	V secondary m³/h	_	_	_	_	_	_	0.56	1.08	1.44	2.26	3.12	3.98
55/20 °C	T return primary °C	-	_	_	_	_	_	30	30	30	30	30	30
	V primary m³/h	_	_	_	_	_	_	0.47	0.9	1.17	1.9	2.63	3.36
	Q max. kW	_	_	_	_	_	_	16	31	40	65	90	115
	V secondary m³/h	_	_	_	_	_	_	0.39	0.76	0.99	1.6	2.22	2.83
50/5 °C	T return primary °C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary m³/h	1.29	2.03	2.51	3.67	4.72	5.66	1.28	2.04	2.51	3.71	4.76	5.63
	Q max. kW	37	58	72	105	135	162	44	70	86	127	163	193
	V secondary m³/h	0.71	1.11	1.37	2	2.58	3.09	0.84	1.34	1.64	2.43	3.12	3.69
50/10 °C	T return primary °C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary m³/h	1.29	2.03	2.51	3.67	4.72	5.66	1.28	2.04	2.51	3.73	4.81	5.69
	Q max. kW	38	58	72	105	135	162	44	70	86	128	165	195
	V secondary m³/h	0.82	1.25	1.77	2.26	2.9	3.48	0.95	1.51	1.85	2.75	3.55	4.19
50/15 °C	T return primary °C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary m³/h	1.29	2.03	2.51	3.67	4.72	5.66	1.11	1.95	2.48	3.76	4.76	5.69
	Q max. kW	37	58	72	105	135	162	38	67	85	129	163	195
	V secondary m³/h	0.91	1.43	1.77	2.58	3.32	3.99	0.94	1.65	2.09	3.18	4.01	4.8
50/20 °C	T return primary °C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary m³/h	1.15	2.03	2.55	3.7	4.75	5.69	0.96	1.69	2.13	3.24	3.63	5.16
	Q max. kW	33	58	73	106	136	163	33	58	73	111	145	177
	V secondary m³/h	0.95	1.67	2.1	3.05	3.91	4.69	0.95	1.67	2.1	3.19	4.17	5.09

T return primary °C Return temperature primary

 \dot{V} primary m³/h Flow rate primary Q max. kW Output

 \dot{V} secondary m^3/h Flow rate secondary

The specified technical data relate to the full load of the module in each case.

Performance data

TransTherm® aqua L (1-10 to 1-50) / TransTherm® aqua L-FW (2-10 to 2-50)

Flow temperature heating water

						°C)						°C ·)		
Domestic water secondary	TransTherm® aq TransTherm® aq		(10)	(16)	(20)	(30)	(40)	(50)	(10)	(16)	(20)	(30)	(40)	(50)
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	1.08	1.88	2.5	3.73	4.84	5.77	1.32	2.09	2.59	3.76	4.82	5.72
60/5 °C	Q max.	kW	43	75	100	149	193	230	60	95	118	171	219	260
	V secondary	m³/h	0.67	1.17	1.55	2.33	3.01	3.59	0.94	1.48	1.84	2.67	3.42	4.06
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.8	1.5	2.01	3.16	4.34	5.39	1.08	1.94	2.48	3.77	4.95	5.92
60/10 °C	Q max.	kW	32	60	80	126	173	215	50	90	115	175	230	275
	V secondary	m³/h	0.55	1.03	1.38	2.17	2.98	3.7	0.86	1.54	1.98	3.01	3.95	4.73
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.55	1.05	1.38	2.13	3.08	3.96	0.97	1.8	2.37	3.73	4.84	5.72
60/15 °C	Q max.	kW	22	42	55	85	123	158	44	82	108	170	220	260
	V secondary	m³/h	0.42	0.8	1.05	1.63	2.35	3.02	0.84	1.57	2.08	3.24	4.21	4.98
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.3	0.6	0.8	1.28	1.75	2.33	0.62	1.14	2.05	2.4	3.43	4.22
60/20 °C	Q max.	kW	12	24	32	51	70	93	28	52	68	109	156	192
	V secondary	m³/h	0.26	0.52	0.69	1.1	1.51	2	0.6	1.12	1.47	2.36	3.36	4.14
55/5 °C	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.8	1.5	2.01	3.16	4.34	5.39	1.08	2.09	2.53	3.74	4.84	5.76
	Q max.	kW	32	60	80	126	173	215	50	95	115	170	220	262
	V secondary	m³/h	0.55	1.03	1.38	2.17	2.98	3.7	0.86	1.63	1.97	2.92	3.78	4.5
55/10 °C	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	1.3	2.06	2.53	3.71	4.81	5.64	1.08	1.87	2.42	3.74	4.84	5.72
	Q max.	kW	52	82	101	148	192	225	49	85	110	170	220	260
	V secondary	m³/h	0.99	1.57	1.93	2.83	3.67	4.3	0.94	1.62	2.1	3.24	4.21	4.98
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.97	1.65	2.11	3.71	4.81	5.64	1.1	1.88	2.41	3.74	4.22	5.1
55/15 °C	Q max.	kW	44	75	96	148	192	225	44	75	96	148	192	232
	V secondary	m³/h	0.95	1.61	2.07	3.19	4.13	4.84	0.94	1.62	2.1	3.19	4.21	5
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.95	1.68	2.13	3.23	4.24	5.14	0.84	1.47	1.87	2.84	3.72	4.51
55/20 °C	Q max.	kW	38	67	85	129	169	205	38	67	85	129	169	205
	V secondary	m³/h	0.94	1.65	2.09	3.18	4.16	5.05	0.94	1.65	2.09	3.18	4.16	5.05
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	1.25	2.06	2.53	3.71	4.81	5.64	1.08	1.87	2.42	3.56	4.84	5.72
50/5 °C	Q max.	kW	50	82	101	148	192	225	49	85	110	162	220	260
	V secondary	m³/h	0.95	1.57	1.93	2.83	3.67	4.3	0.94	1.62	2.1	3.09	4.21	4.98
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	1.1	1.88	2.41	3.71	4.81	5.64	0.97	1.65	2.11	3.25	4.22	5.1
50/10 °C	Q max.	kW	44	75	96	148	192	225	44	75	96	148	192	232
	V secondary	m³/h	0.95	1.61	2.07	3.19	4.13	4.84	0.95	1.61	2.07	3.19	4.13	5
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
	V primary	m³/h	0.95	1.68	2.13	3.23	4.24	5.14	0.84	1.47	1.87	2.84	3.72	4.51
50/15 °C	Q max.	kW	38	67	85	129	169	205	38	67	85	129	169	205
	V secondary	m³/h	0.94	1.65	2.09	3.18	4.16	5.05	0.94	1.65	2.09	3.18	4.16	5.05
	T return primary	°C	30	30	30	30	30	30	30	30	30	30	30	30
= 0/60 00	V primary	m³/h	0.83	1.45	1.81	2.44	3.63	4.44	0.73	1.28	1.61	2.44	3.19	3.89
50/20 °C	Q max.	kW	33	58	73	111	145	177	33	58	73	111	145	177
	V secondary	m³/h	0.95	1.67	2.1	3.19	4.17	5.09	0.95	1.67	2.1	3.19	4.17	5.09

T return primary °C Return temperature primary

V primary m³/h Flow rate primary

Q max. kW Output

V secondary m³/h Flow rate secondary

The specified technical data relate to the full load of the module in each case.

Performance data

TransTherm® aqua L (1-10 to 1-50) / TransTherm® aqua L-FW (2-10 to 2-50) Temperature primary 70 $^{\circ}$ C flow/30 $^{\circ}$ C return

Domestic	water	heating
-----------------	-------	---------

Domestic water neating				0.11	1 10 00 0		22.02			
		TransTherm® aqua L	Cold water 10 °C Domestic water 60 °C							
		TransTherm® aqua L-FW	(10)	(16)	(20)	(30)	(40)	(50)		
		kW	50	90	115	175	230	275		
		m³/h	0.86	1.54	1.97	3.00	3.94	4.71		
		l/min	14.3	25.7	32.9	50.0	65.7	78.6		
		I/s	0.2	0.4	0.5	8.0	1.1	1.3		
Tank size										
<u> </u>										
200	Уs	I/10 min	343	457	529	-	-	-		
	Hourly output	I/h at 60 °C	1057	1743	2171	-	-	-		
	NL index		13	22	29	-	-	-		
300	Уs	I/10 min	443	557	629	800	-	-		
	Hourly output	I/h at 60 °C	1157	1843	2271	3300	-	-		
	NL index		21	31	39	57	-	-		
400	Уs	I/10 min	543	657	729	900	-	-		
	Hourly output	I/h at 60 °C	1257	1943	2371	3400	-	_		
	NL index		23	41	49	69	-	_		
500	Уs	I/10 min	643	757	829	1000	1157	_		
	Hourly output	I/h at 60 °C	1357	2043	2471	3500	4443	_		
	NL index		25	44	56	80	100	_		
800	Уs	I/10 min	943	1057	1129	1300	1457			
	Hourly output	l/h at 60 °C	1657	2343	2771	3800	4743	_		
	NL index		33	52	64	94	123	_		
1000	Vs	I/10 min	1143	1257	1329	1500	1657	1786		
	Hourly output	l/h at 60 °C	1857	2543	2971	4000	4943	5714		
	NL index	., at 55 5	38	57	69	100	128	152		
1500	Vs	I/10 min	-	1757	1829	2000	2157	2286		
.000	Hourly output	I/h at 60 °C	_	3043	3471	4500	5443	6214		
	NL index	1/11 dt 00 'O	_	71	83	114	143	167		
2000	. Vs	I/10 min		2257	2329	2500	2657	2786		
_000	Hourly output	I/h at 60 °C	_	3543	3971	5000	5943	6714		
	NL index	,,,, at 00 0	_	84	97	128	158	182		
2500	. Vs	I/10 min		2757	2829	3000	3157	3286		
2000	Hourly output	l/h at 60 °C	_	4043	4471	5500	6443	7214		
	NL index	1/11 at 00 O	_	99	115	144	174	198		
	INT ILIARY		-	33	110	144	174	190		

Уs I/10 min NL index

10 minutes peak flow rate at 60 °C

Performance figure in accordance with DIN 4708 = number of flats which can be supplied with domestic hot water when the calorifier is heated and permanently reheated with the heat generator (standard flat: 1 bath – 4 rooms – 3.5 persons)

Performance data

TransTherm® aqua L (1-10 to 1-50) / TransTherm® aqua L-FW (2-10 to 2-50)

Tapping point (mixing temperate

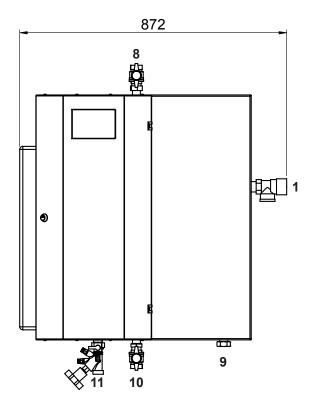
Tapping poi	int (mixing temperature)									
TransTherm® aqua L			Cold water 10 °C Domestic water 45 °C							
		TransTherm® aqua L-FW	(10)	(16)	(20)	(30)	(40)	(50)		
		kW	50	90	115	175	230	275		
		m³/h	1.22	2.20	2.82	4.29	5.63	6.73		
		l/min	20.4	36.7	46.9	71.4	93.9	112.2		
		I/s	0.3	0.6	8.0	1.2	1.6	1.9		
Tank size								_		
1										
200	Vs	I/10 min	490	653	755	-	-	-		
	Hourly output	I/h at 45 °C	1510	2490	3102	-	-	-		
	NL index		13	22	29	-	-	-		
300	Vs	I/10 min	633	796	898	1143	-	-		
	Hourly output	I/h at 45 °C	1653	2633	3245	4714	-	-		
	NL index		21	31	39	57	-	-		
400	Vs	I/10 min	776	939	1041	1286	-	-		
	Hourly output	I/h at 45 °C	1796	2776	3388	4857	-	-		
	NL index		23	41	49	69	-	-		
500	Vs	I/10 min	918	1082	1184	1429	1653	-		
	Hourly output	I/h at 45 °C	1939	2918	3531	5000	6347	-		
	NL index		25	44	56	80	100	-		
800	Vs	I/10 min	1347	1510	1612	1857	2082	-		
	Hourly output	I/h at 45 °C	2367	3347	3959	5429	6776	-		
	NL index		33	52	64	94	123	-		
1000	Уs	I/10 min	1633	1796	1898	2143	2367	2551		
	Hourly output	I/h at 45 °C	2653	3633	4245	5714	7061	8163		
	NL index		38	57	69	100	128	152		
1500	Vs	I/10 min	-	2510	2612	2857	3082	3265		
	Hourly output	I/h at 45 °C	-	4347	4959	6429	7776	8878		
	NL index		-	71	83	114	143	167		
2000	Vs	I/10 min	-	3224	3327	3571	3796	3980		
	Hourly output	I/h at 45 °C	-	5061	5673	7143	8490	9592		
	NL index		-	84	97	128	158	182		
2500	Уs	I/10 min	-	3939	4041	4286	4510	4694		
	Hourly output	I/h at 45 °C	-	5776	6388	7857	9204	10306		
	NL index		-	99	115	144	174	198		

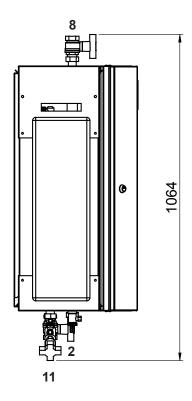
NL index

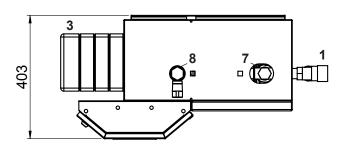
I/10 min

10 minutes peak flow rate at 45 °C

Performance figure in accordance with DIN 4708 = number of flats which can be supplied with domestic hot water when the calorifier is heated and permanently reheated with the heat generator (standard flat: 1 bath – 4 rooms – 3.5 persons)

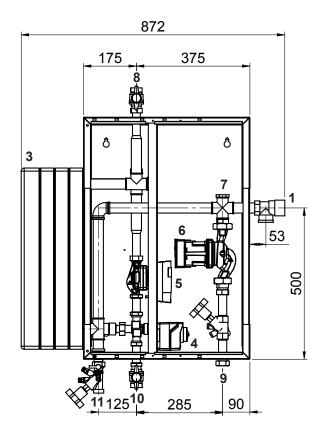

Hot water charging tank CombiVal E (300-2000)

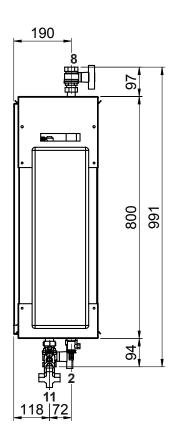

Туре		(300)	(500)	(800)	(1000)	(1500)	(2000)
• Volume	1	301	475	747	968	1472	2000
 Max. operating/test pressure SVGW 	bar	6/12	6/12	6/12	6/12	6/12	6/12
 Max. operating/test pressure DVGW 	bar	10/13	10/13	10/13	10/13	10/13	10/13
Max. operating temperature	°C	95	95	95	95	95	95
 Thermal insulation PU hard foam, foam-lined 	mm	75	75	-	-	-	-
 Thermal insulation polyester fleece 	mm	-	-	100	100	120	120
 Thermal insulation λ 	W/mK	0.027	0.027	0.040	0.040	0.040	0.040
Fire protection class		B2	B2	B2	B2	B2	B2
 Heat loss at 65 °C 	W	58	75	128	139	170	190
Transport weight	kg	97	126	205	264	400	600
• U value	W/m ² K	0.290	0.303	0.381	0.362	0.339	0.325

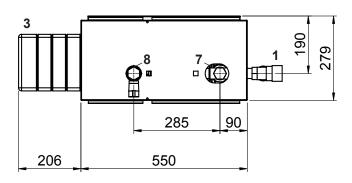

Hot water charging tank CombiVal C (200-2500)

Туре		(200)	(300)	(400)	(500)	(750)	(1000)	(1500)	(2000)	(2500)
 Volume 	1	212	289	411	490	756	990	1415	1975	2450
 Max. operating/test pressure SVGW 	bar	6/12	6/12	6/12	6/12	6/12	6/12	6/12	6/12	6/12
Max. operating temperature	°C	95	95	95	95	95	95	95	95	95
 Thermal insulation 	Neodul [®] insulation (EPS rigid foam outside and polyester fibre fleece inside)									
	mm	100	100	100	100	100	100	120	120	120
 Thermal insulation λ 	W/mK	0.0316	0.0316	0.0316	0.0316	0.0316	0.0316	0.0316	0.0316	0.0316
 Fire protection class 		B2								
 Heat loss at 65 °C 	W	62	68	77	82	120	140	162	180	206
Transport weight	kg	55	70	83	85	119	150	215	265	445
• U value	W/m ² K	0.329	0.329	0.329	0.329	0.329	0.329	0.273	0.273	0.273

Charging module TransTherm® aqua L (1-10) (Dimensions in mm)

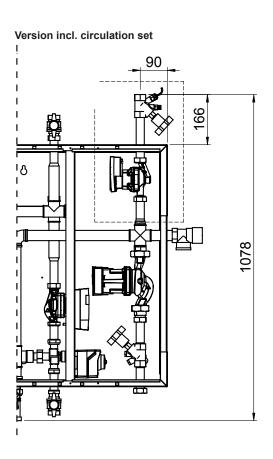

- Safety valve Hot water 10 bar
- 2 Filling/drain valve
- Heat exchanger


		(1-10)
-	Circulation 1)	DN 25, Rp 1" (20, Rp ¾") (IT)
	Hot water Cold water	DN 25, Rp 1" (IT) DN 20, Gp 1" (IT)
10 11	Flow heating water Return heating water	DN 25, Rp 1" (IT) DN 25, Gp 1" (IT)

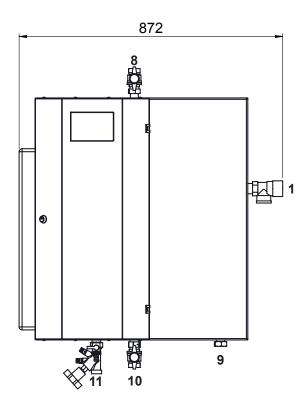

Optional, connection and installation on site

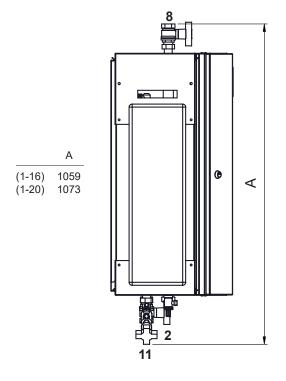
TransTherm® aqua L	Weight in kg
(1-10)	56

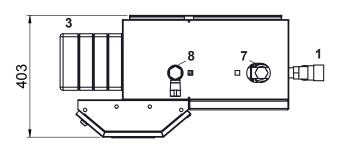
Charging module TransTherm® aqua L (1-10) (Dimensions in mm)



- Safety valve Hot water 10 bar
- Filling/drain valve
- Heat exchanger
- Primary three-way valve
- 5 Primary circulating pump
- 6 Secondary circulating pump

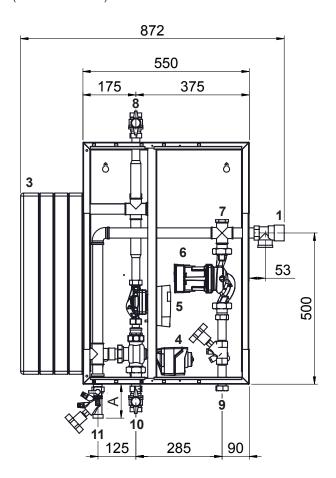

		(1-10)
8	Circulation 1) Hot water Cold water	DN 25, Rp 1" (20, Rp ¾") (IT) DN 25, Rp 1" (IT) DN 20, Gp 1" (IT)
	Flow heating water Return heating water	DN 25, Rp 1" (IT) DN 25, Gp 1" (IT)

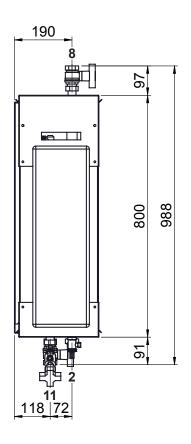

Optional, connection and installation on site

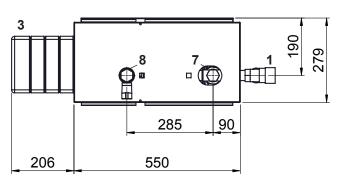


Charging module TransTherm® aqua L (1-16, 1-20) (Dimensions in mm)

- Safety valve Hot water 10 bar
- 2 Filling/drain valve
- Heat exchanger


		(1-16) (1-20)
7	Circulation 1)	DN 25, Rp 1" (20, Rp 3/4") (IT)
8	Hot water	DN 25, Rp 1" (IT)
9	Cold water	DN 20, Gp 1" (IT)
	Flow heating water Return heating water	DN 25, Rp 1" (IT) DN 25, Gp 1" (IT)
	0	, , , ,


Optional, connection and installation on site


TransTherm® aqua L	Weight in kg
(1-16)	58
(1-20)	60

Charging module TransTherm® aqua L (1-16, 1-20)

(Dimensions in mm)

- Safety valve Hot water 10 bar
- Filling/drain valve
- Heat exchanger 3
- Three-way valve primary
- 5 Primary circulating pump
- Secondary circulating pump 6

1	1 1	۵۱	11	-20	١
(1-1	U)	(1	-20	,

- Circulation 1) 7
- DN 25, Rp 1" (20, Rp ¾") (IT) DN 25, Rp 1" (IT) DN 20, Gp 1" (IT) 8 Hot water Cold water 9
- DN 25, Rp 1" (IT) DN 25, Gp 1" (IT) Flow heating water 10 Return heating water 11
 - Optional, connection and installation on site

Gp = straight internal thread

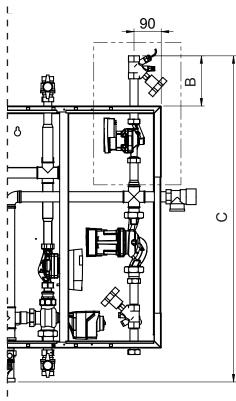
Version incl. circulation set

С

1078

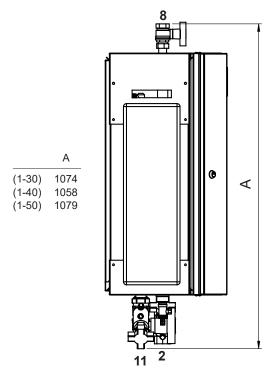
1121

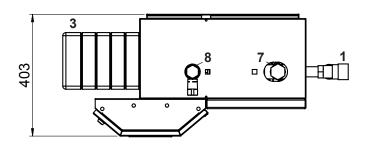
(1-16)


(1-20)

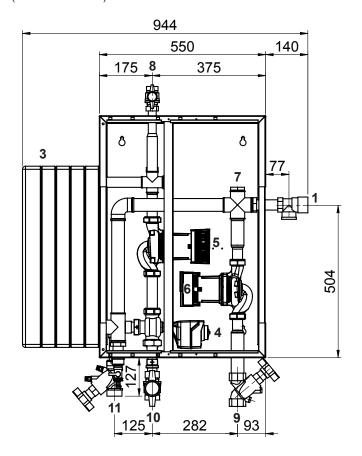
112

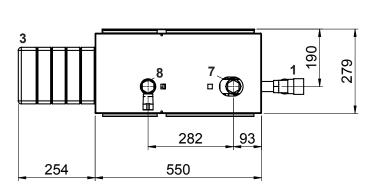
128


166


193

Charging module TransTherm $^{\rm @}$ aqua L (1-30 to 1-50) (Dimensions in mm)


- Safety valve Hot water 10 bar
- 2 Filling/drain valve
- Heat exchanger

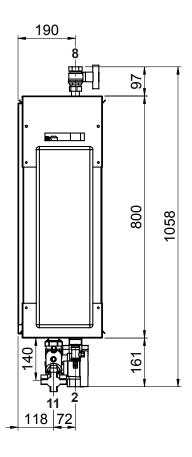

		(1-30) (1-40) (1-50)	TransTherm® aqua L W	/eight in kg
7	Circulation 1)	DN 32, Rp 11/4" (25, Rp 1") (20, Rp 3/4") (IT)	(1-30)	66
8	Hot water	DN 32, Rp 11/4" (IT)	(1-40)	68
9	Cold water	DN 32, Rp 11/4" (IT)	(1-50)	70
10	Flow heating water	DN 32, Rp 11/4" (IT)		
11	Return heating water	DN 32, Gp 1½" (IT)		

Optional, connection and installation on site

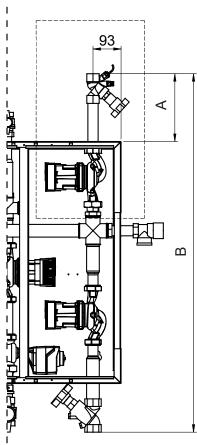
Charging module TransTherm® aqua L (1-30 to 1-50)

(Dimensions in mm)

- 1 Safety valve Hot water 10 bar
- 2 Filling/drain valve
- 3 Heat exchanger
- 4 Primary three-way valve
- 5 Primary circulating pump
- 6 Secondary circulating pump


(1-30)	(1-40)	(1-50)

7 Circulation ¹⁾ DN 32, Rp 1½" (25, Rp 1") (20, Rp ¾") (IT)


8 Hot water DN 32, Rp 1¼" (IT)
 9 Cold water DN 32, Rp 1¼" (IT)
 10 Flow heating water DN 32, Rp 1¼" (IT)
 11 Return heating water DN 32, Gp 1½" (IT)

Optional, connection and installation on site

Gp = straight internal thread

Version incl. circulation set

224

221

219

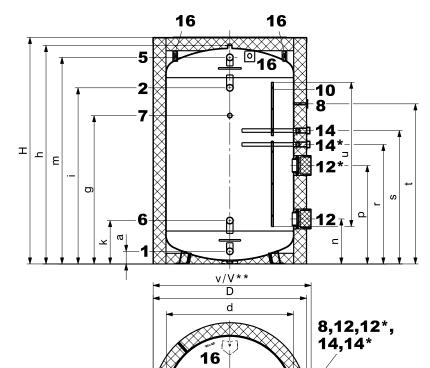
(1-30)

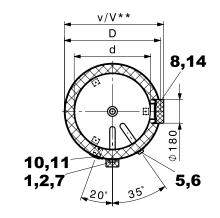
(1-40)

(1-50)

1185

1182


1180


CombiVal E (300,500)

(Dimensions in mm)

min. 160 14 2 **\tau10** 8 11 I Ε Φ a

CombiVal E (800-2000)

1	Cold water	type (300,500)	G 1¼"	(ET)
		type (800-2000)	G 2"	(ET)
2	Domestic hot water	type (300,500)	G 11/4"	(ET)
		type (800-2000)	G 2"	(ET)
5	Charging flow – hot	type (300,500)	G 11/4"	(ET)
		type (800-2000)	G 2"	(ET)
6	Charging return – cold	type (300,500)	G 11/4"	(ET)
		type (800-2000)	G 2"	(ET)
7	Circulation	type (300,500)	G ¾"	(ET)
	(removable insulated cap Ø 100 mm)	type (800-2000)	G 1¼"	(ET)

Deviations possible as a result of manufacturing tolerances. Dimensions ± 10 mm

- 8 Thermometer
- Sensor channel, inner Ø 11 mm Sensor terminal strip (zip fastener)
- Removable cap (Ø 60 mm) for positioning the sensor in the sensor channel

16

1,2,5,6,7

- 12 Hand-hole flange (flange-mounted electric heating element) Ø 180/120 mm, pitch circle 150 mm, 8 x M10
- Attention:

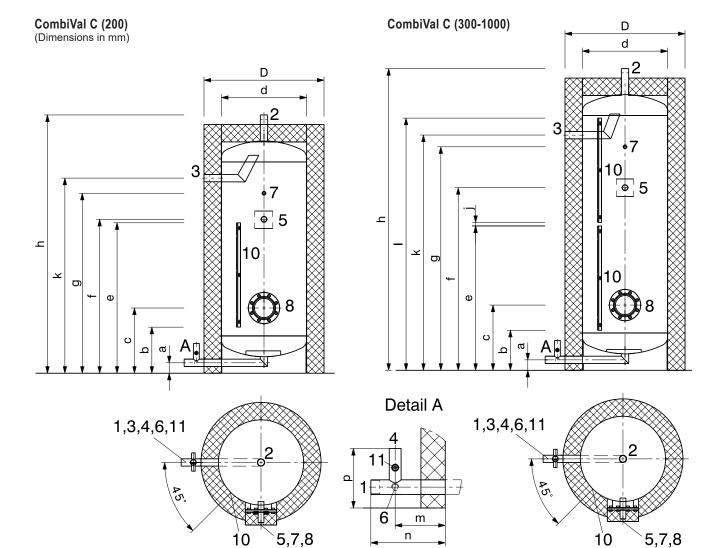
type (800,1000) does not have a second flange Anode sleeve

Anode sleeve Screw connection uninsulated

16 Transport strap

type (300,500) type (800-2000) type (300,500)

16

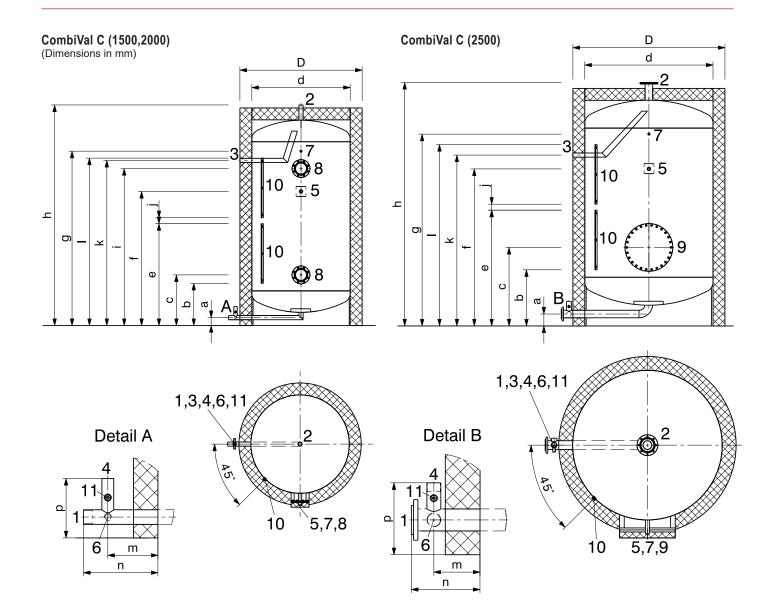

10

type (300,500) $\,$ G 1" $\,$ (IT) type (800-2000) $\,$ G 1½" $\,$ (IT) type (1500,2000) G 11/4" (IT)

type (800-2000)

CombiVal E type	D	d	Н	h	а	k	е	g	m	n	р	r	s	t	u	V	V**	Tilting dimension
(300)	650	500	1850	-	235	-	945	1160	1584	325	-	-	-	1505	1360	745	785	1961
(500)	750	597	1960	-	238	-	996	1225	1674	275	-	-	-	1500	1360	745	785	2082
(800)	950	750	2030	1938	101	347	-	1150	1893	352	-	-	1336	1505	1400	975	1020	1960
(1000)	1050	850	2060	1968	100	355	-	1158	1910	360	-	-	1331	1500	1400	1075	1120	2000
(1500)	1240	1000	2240	2133	105	375	-	1357	2049	390	890	1167	1521	1657	1450	1265	1310	2370
(2000)	1440	1200	2150	2044	118	406	-	1388	1933	421	921	1118	1248	1498	1350	1465	1510	2350

^{**} When using a flange-mounted electric heating element



- Cold water with baffle plate type (200,300) Rp 1 1/4" (IT) type (400,500) Rp 1 ½" (IT) type (750,1000) Rp 2" (IT) Rp 1 1/4" 2 Hot water type (200,300) (IT) Rp 1 ½" type (400,500) (IT) type (750,1000) Rp 2" (IT) Charging flow - hot type (200-500) type (750,1000) Rp 1 1/4" (IT) Rp 1" Charging return - cold type (200-500) (IT) type (750,1000) Rp 1 1/4" (IT) Circulation with baffle plate type (200-500) Rp 1" (IT) type (750,1000) Rp 1 1/4" (IT) 6 Drain type (200-500) Rp 1/2" (IT) type (750,1000) Rp 3/4" (IT)
- 7 Sleeve (Rp $\frac{1}{2}$ " (IT)) for mountable immersion sleeve and thermometer (L = 100 mm, inner Ø = 8 mm)
- 8 Hand-hole flange (17.7 Nm) Ø 180/120 mm, pitch circle 150 mm, 8 x M10 or optional:
 - flange-mounted electric heating element or
 - impressed current anode set with flange cover, $180-1\frac{1}{2}$ " (IT)
- 10 Sensor terminal bar 600 x 30 mm 1 x type (200), 2 x type (300-1000)
- 11 Immersion sleeve M16 x 1.5 for sensor/thermostat

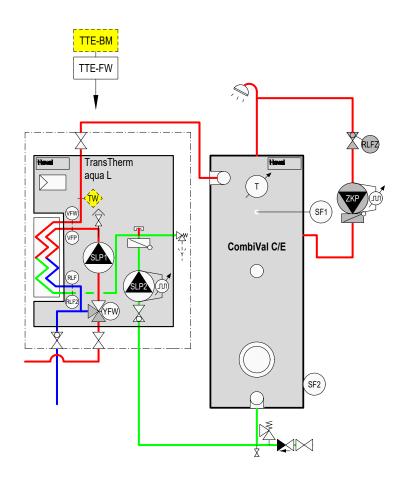
Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

CombiVal C type	а	b	С	d	D	е	f	g	h	j	k	I	m	n	р	Tilting dimension
(200)	60	240	375	490	690	840	885	1035	1485	-	1125	-	130	190	174	1515
(300)	60	240	375	490	690	840	1050	1285	1735	20	1355	1460	135	205	174	1765
(400)	70	285	420	590	790	885	1095	1330	1745	20	1365	1505	135	205	184	1780
(500)	80	295	430	640	840	895	1105	1340	1765	20	1375	1515	130	190	194	1805
(750)	80	335	470	740	940	935	1310	1590	2085	60	1665	1595	135	205	194	2130
(1000)	80	365	500	890	1090	965	1215	1495	1890	20	1384	1585	135	205	203	1950

1	Cold water with baffle plate	type (1500,2000) type (2500)	Rp 2" DN 65/PN	(IT)
2	Hot water	type (1500,2000)	Rp 2" DN 65/PN	(IT)
3	Charging flow – hot	type (2500) type (1500-2000)	Rp 1 ½"	(IT)
	Charging return – cold	type (1500-2000)	Rp 1 ½"	(IT)
5 6	Circulation with baffle plate Drain	type (1500-2000) type (1500-2000)	Rp 1 ½" Rp ¾"	(IT) (IT)

- Sleeve (Rp 1/2" (IT)) for mountable immersion sleeve and thermometer (L = 100 mm, inner \emptyset = 8 mm)
- Hand-hole flange (17.7 Nm) Ø 180/120 mm, pitch circle 150 mm, 8 x M10 or optional:
 - flange-mounted electric heating element or
 - impressed current anode set with flange cover, 180 11/2" (IT)


- Manhole flange (40 Nm)
 - Ø 400/480 mm, pitch circle 445 mm, 26 x M14 or optional Flange adapter:
 - for electric heating element or
 - for impressed current anode set with flange cover, $180-11\!\!/\!\!2"$ (IT)
- Sensor terminal bar 600 x 30 mm
 - 2 x type (1500-2500)
- Immersion sleeve M16 x 1.5 for sensor/thermostat

Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

CombiVal C type	а	b	С	d	D	е	f	g	h	i	j	k	m	n	р	Tilting dimension
(1500)	80	375	510	990	1230	975	1350	1755	2220	1580	60	1674	165	235	203	2300
(2000)	80	405	530	1090	1330	1005	1580	2035	2525	1860	165	1909	165	235	203	2610
(2500)	120	515	790	1290	1530	1115	1580	1930	2450	-	60	1719	165	250	243	2570

- Water heating
 TransTherm® aqua L
 Circulation via storage tank Circulation via storage tankStorage tank charging system

IIE-FW	Basic module district heating/fresh water
TW	Flow temperature monitor (if required)
VFP	Primary flow sensor
VFW	Flow sensor domestic hot water
RLF	Primary return sensor
RLF2	Return sensor domestic cold water
SF1	Calorifier sensor 1
SF2	Calorifier sensor 2
RLFZ	Circulation sensor
SLP1	Calorifier charging pump primary
SLP2	Calorifier charging pump secondary
YFW	Three-way valve with actuator
ZKP	Recirculation pump

Option

TopTronic® E control module

Notice

A safety valve (6 bar) must be installed in the cold water line. The loading module is already protected with a safety valve (10 bar).

Buffer storage tank EnerVal (100-300)

- Steel buffer storage tank for the hydraulic integration of energy generators
- Thermal insulation made of polyurethane hard foam, foamed on the storage
- · Removable foil jacket in red
- (100): 2 connection sleeves Rp 1 ½",
 2 connection nozzles R 1"
 (200): 5 connection sleeves Rp 1 ½"
 (300): 8 connection sleeves Rp 1 ½"
- 1 sleeve Rp ½" with thermometer and immersion sleeve mounted
- 2 sensor channels

Delivery

 Buffer storage tank with foil jacket completely installed and packed

Buffer storage tank EnerVal (500)

- Steel buffer storage tank for the hydraulic integration of energy generators
- Thermal insulation made of polyurethane hard foam, foamed on the calorifier
- Removable foil jacket in red
- 8 connection sleeves Rp 1 1/2"
- 1 sleeve Rp 1½" for screw-in electrical heating inset
- 1 sleeve Rp ½" with thermometer and immersion sleeve mounted
- · 2 sensor channels

Delivery

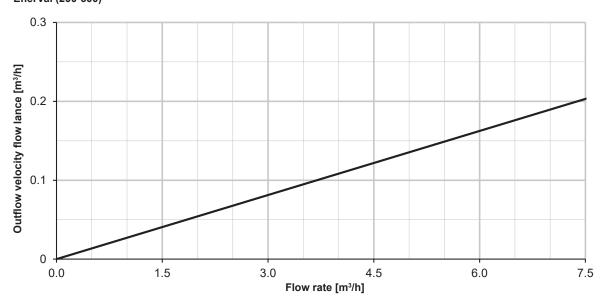
 Buffer storage tank with foil jacket completely installed and packed

	0:0
:	
•	

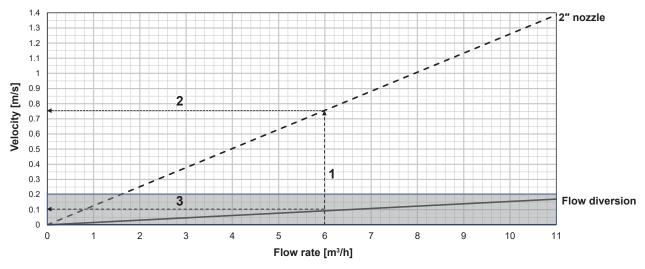
Range EnerVal type		Nominal content I	Operating pressure bar
(100)	Α	117	3
(200)	В	222	3
(300)	В	283	3
(500)	В	473	3
(800)		785	3
(1000)		918	3
(1500)		1425	3
(2000)		2019	3
	$A^+ \rightarrow F$		

Buffer storage tank EnerVal (800-2000)

- Steel buffer storage tank for the hydraulic integration of energy generators
- Thermal insulation made of polyester fleece with foil jacket, colour red
- 10 connection sleeves G 2" (IT)
- 2 sleeves G 1½" (IT) for screw-in electric heating element
- 3 sleeves G 1/2" (IT) for sensor/thermometer
- · Terminal strips for contact sensors
- 1 sleeve G 1" (IT) for circulation lance only with EnerVal (800,1000)
- 1 sleeve G 1" (IT) for ventilation
- Perforated separating plate in the central area for separation of the temperature zones
- Flow diversions permanently installed
- 13 insulated cover caps made of EPP hard foam, 2-piece (can be broken out)

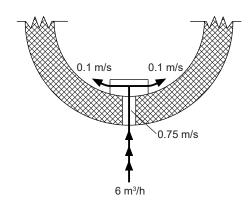

Delivery

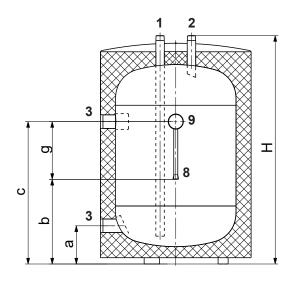
- Buffer storage tank with foil jacket completely installed and packed
- Insulated cover caps already installed (can be removed and broken out)


EnerVal (100-2000)

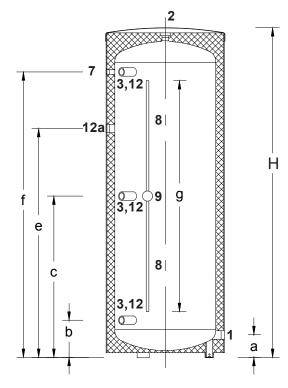
Туре		(100)	(200)	(300)	(500)	(800)	(1000)	(1500)	(2000)
Volume	litres	117	222	283	473	785	918	1425	2019
Max. operating/test pressure	bar	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Min. operating temperature	°C	5	5	5	5	20	20	20	20
Max. operating temperature	°C	95	95	95	95	95	95	95	95
Thermal insulation PU rigid foam, foam-lined	mm	50	50	75	75	-	-	-	-
Thermal insulation polyester fleece	mm	-	-	-	-	150	150	150	150
 Thermal insulation λ 	W/mK	0.027	0.027	0.027	0.027	0.04	0.04	0.04	0.04
Fire protection class		B2	B2	B2	B2	B2	B2	B2	B2
Heat loss at 65 °C	W	35	53	51	72	119	130	153	185
Transport weight	kg	41	59	79	111	170	187	265	540
• U value	W/m ² K	0.359	0.359	0.279	0.296	0.315	0.308	0.299	0.302

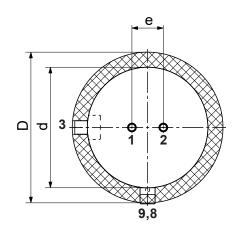
Outflow velocity flow lance DN 40 EnerVal (200-500)

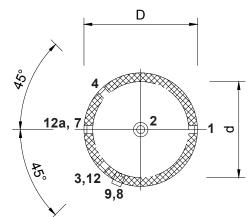

Velocity in the connection nozzles and inflow velocity with flow deflection EnerVal (800-2000) $\,$


= flow rate

velocity in the connection nozzles inflow velocity with flow deflection in the EnerVal

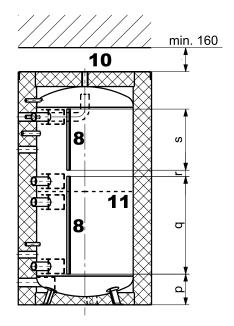

Example of inlet velocity distribution by flow diversions EnerVal (800-2000)

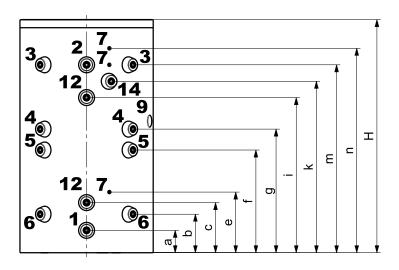


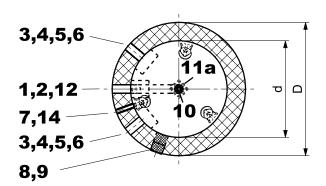

EnerVal (100) (Dimensions in mm)

EnerVal (200-500)

			Type (100)	Type (200-500)
1	Heating connection	return discharge	R 1" (ET)	G 1½" (IT)
2	Heating connection	flow discharge	R 1" (ET)	G 1½" (IT)
3	Heat generator connection	flow/return	G 1½" (IT)	G 1½" (IT)
4	Heat generator connection	flow/return 3 x, only with EnerVal (300,500)		G 1½" (IT)
7	Sleeve with mounted imme	rsion sleeve and thermometer		
8	Sensor channel inner Ø 11	mm		
9	Removable cap (60 mm) for	or positioning the sensor in the sensor channel		
12	Connection for screw-in ele	ectric heating element		G 1½" (IT)
	(Positioning depends on th	e system, see hydraulic schematics of the heat ger	nerator)	
12a	Additional connection for se	crew-in electric heating element, only for EnerVal (500)	G 1½" (IT)


1 + 2 For EnerVal (100), suitable for direct installation of an armature group LG/HA 25-2 and 32-2


EnerVal type	D	d	Н	а	b	С	е	f	g	Tilting dimension
(100)	600	480	910	152	337	567	125	-	230	985
(200)	600	480	1440	152	300	720	-	1140	860	1560
(300)	650	480	1780	152	300	890	-	1479	1285	1895
(500)	750	597	1921	127	220	946	1400	1670	1360	2025


Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

EnerVal (800-2000) (Dimensions in mm)

1	Heating connection retu	rn discharge (inflow restrictor)	G 2"	(IT)
2	Heating connection flow	discharge (single-layer elbow pipe)	G 2"	(IT)
3	Heat generator connection flow	top (inflow restrictor)	G 2"	(IT)
4	Heat generator connection retu	ırn top (inflow restrictor)	G 2"	(IT)
5	Heat generator connection flow	bottom (inflow restrictor)	G 2"	(IT)
6	Heat generator connection retu	rn bottom (inflow restrictor)	G 2"	(IT)
7	Sleeve for immersion sleeve, th	ermostat or thermometer	G ½"	(IT)
8	Sensor terminal strip		2 x	
9	Removable cap (100 mm) for po	ositioning the sensor		
10	Possible air vent		G 1"	(IT)
11	Separating plate			
11a	Holes in the separating plate		12 x	
12	Connection for electric heating e	element	G 1½"	(IT)
14	Connection for circulation lance	, attention: only for type (800,1000)	G 1"	(IT)

Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

EnerVal type	D	d	Н	а	b	С	е	f	g	i	k	m	n	р	q	r	s	Tilting dimension
(800) (1000) (1500) (2000)	1090 1090 1300 1500	790 790 1000 1200	1907 2197 2135 2145	183 183 220 220	315 369 368 382	410 468 451 430	496 569 549 529	840 970 941 928	1011 1171 1137 1127	1269 1472 1431 1425	1402 1596 -	1537 1759 1699 1672	1672 1942 1839 1839	251 370 339 350	800 800 800 800	50 100 100 80	500 500 500 500	1945 2230 2179 2210

Buffer storage tank EnerVal G (800,1000)

- · Steel buffer storage tank for the hydraulic integration of energy generators
- Thermal insulation made of polyester fibre with foil jacket, colour red
- 8 connection flanges DN 65 (PN 6)
- 2 connection flanges DN 80 (PN 6)
- 2 flanges outside Ø 180 mm for flangemounted electric heating element
- 3 sleeves G 1/2" (IT) for sensor/thermometer
- Terminal strips for contact sensors
- 1 sleeve G 1" (IT) for circulation lance 1 sleeve G 1" (IT) for ventilation
- · Perforated separating plate in the central area for separation of the temperature zones
- Flow diversions permanently installed
- 12 insulated flange hoods
- 1 insulated cover cap made of EPP hard foam, 2-piece (can be broken out)

Delivery

- Buffer storage tank mounted and packed with foil jacket (can be removed for instal-
- Insulated flange hoods and cover cap already mounted (removable)

Range EnerVal G type	Nominal content	Operating pressure bar
(800)	783	6
(1000)	925	6
(1500)	1395	6
(2500)	2360	6
(4000)	3907	6
(6000)	5815	6

Buffer storage tank EnerVal G (1500,2500)

- · Steel buffer storage tank for the hydraulic integration of energy generators
- Thermal insulation made of polyester fibre with foil jacket, colour red
- 8 connection flanges DN 80 (PN 6)
- 2 connection flanges DN 100 (PN 6)
- 2 flanges outside Ø 257 mm for flangemounted electric heating element
- 3 sleeves G 1/2" (IT) for sensor/thermometer
- Terminal strips for contact sensors
- 1 sleeve G 1" (IT) for ventilation
- Perforated separating plate in the central area for separation of the temperature zones
- Flow diversions permanently installed
- · 12 insulated flange hoods

Delivery

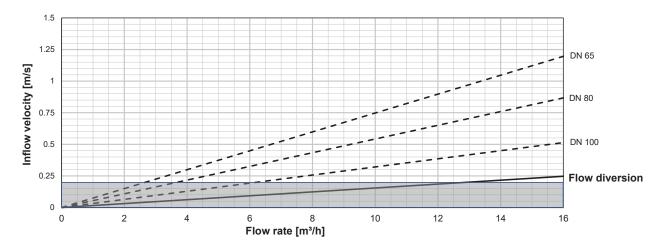
- · Buffer storage tank (1500) mounted and packed with foil jacket (can be removed for installation)
- Buffer storage tank (2500) thermal insulation separate
- Insulated flange hoods already mounted (removable)

Buffer storage tank EnerVal G (4000,6000)

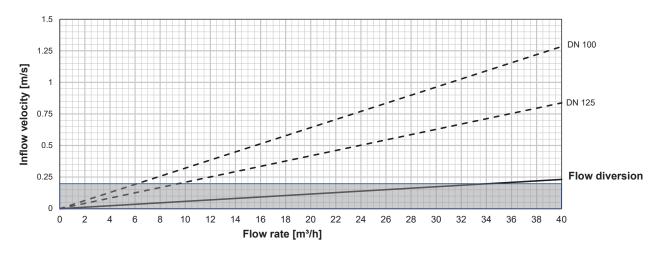
- Steel buffer storage tank for the hydraulic integration of energy generators
- Without thermal insulation (on-site)
- 8 connection flanges DN 100 (PN 6)
- 2 connection flanges DN 125 (PN 6)
- 2 flanges outside Ø 257 mm for flangemounted electric heating element
- 3 sleeves G 1/2" (IT) for sensor/thermometer
- Terminal strips for contact sensors
- 1 sleeve G 1" (IT) for ventilation
- Perforated separating plate in the central area for separation of the temperature zones
- Flow diversions permanently installed

Delivery

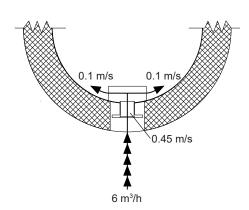
- · Buffer storage tank raw packed
- · Thermal insulation to be provided on site



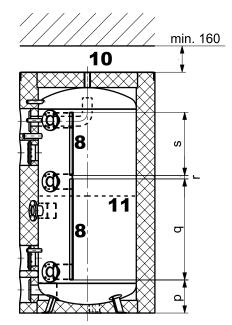
EnerVal G (800-6000)

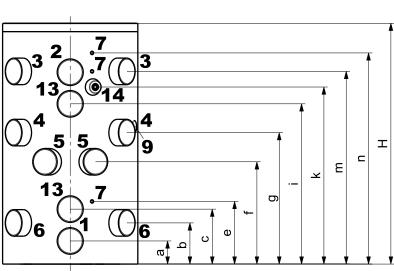

Туре		(800)	(1000)	(1500)	(2500)	(4000)	(6000)
Volume	1	783	925	1395	2360	3907	5815
Max. operating/test pressure	bar	6/8	6/8	6/8	6/8	6/8	6/8
Min. operating temperature	°C	20	20	20	20	20	20
Max. operating temperature	°C	95	95	95	95	95	95
Thermal insulation made from polyester fleece	mm	150	150	150	150	-	-
 Thermal insulation λ 	W/mK	0.04	0.04	0.04	0.04	-	-
Fire protection class		B2	B2	B2	B2	-	-
Heat loss at 65 °C	W	114	129	152	203	-	-
Transport weight	kg	220	250	375	775	1275	1695
• U value	W/m ² K	0.302	0.305	0.295	0.295	-	-
5 .							

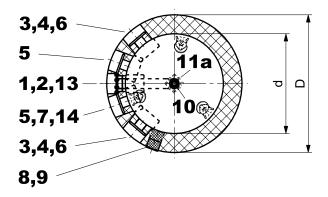
• Dimensions see dimensional drawing


Velocity in the connection nozzles and inflow velocity with flow deflection in the EnerVal G (800-2500) $\,$

EnerVal G (4000,6000)




Example of inlet velocity distribution by flow diversions EnerVal G (800-6000)



EnerVal G (800-2500)

(Dimensions in mm)

Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

1	Heating connection	return discharge (inflow restrictor)
2	Heating connection	flow discharge (single-layer elbow pipe
3	Heat generator connection	flow top (inflow restrictor)
4	Heat generator connection	return top (inflow restrictor)
5	Heat generator connection	flow bottom (inflow restrictor)
6	Heat generator connection	return bottom (inflow restrictor)
7	Sleeve for immersion sleeve	e, thermostat or thermometer
8	2 sensor terminal strips	
9	Removable cap (100 mm) for	or positioning the sensor

Type (800,1000) pitch circle Type (1500,2500) pitch circle Ø

DN 80, 4 x M16*, PN 6, 150 mm DN 100, 4 x M16*, PN 6, 170 mm
e) DN 80, 4 x M16*, PN 6, 150 mm DN 100, 4 x M16*, PN 6, 170 mm
DN 65, 4 x M12*, PN 6, 130 mm DN 80, 4 x M16*, PN 6, 150 mm
DN 65, 4 x M12*, PN 6, 130 mm DN 80, 4 x M16*, PN 6, 150 mm
DN 65, 4 x M12*, PN 6, 130 mm DN 80, 4 x M16*, PN 6, 150 mm
DN 65, 4 x M12*, PN 6, 130 mm DN 80, 4 x M16*, PN 6, 150 mm
DN 65, 4 x M12*, PN 6, 130 mm DN 80, 4 x M16*, PN 6, 150 mm
G ½" (IT)

G 1" (IT)

12 x

9 Removable cap (100 mm) for positioning the senso10 Possible air vent

Separating plate

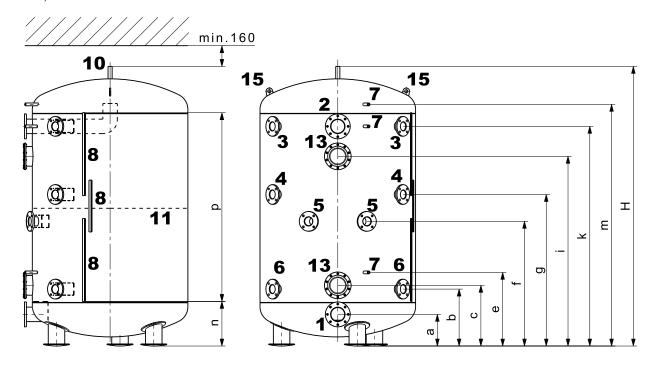
11

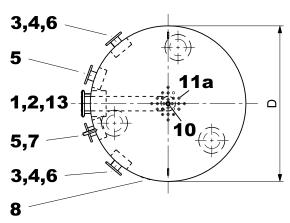
Holes in the separating plate
 Hand-hole flange (flange-mounted electric heating element)
 (800,1000) outside Ø 180 mm, pitch circle Ø 150 mm, 8 x M10

(1500,2500) outside Ø 257 mm, pitch circle Ø 225 mm, 10 x M10

14 Connection for circulation lance, **attention:** only for type (800,1000) G 1" (IT)

* The screw holes have threads
 ** Dimension for transport into building 823 mm (due to flanges position 3,4,6)


EnerVal	EnerVal G															Tilting		
type	D	d	Н	а	b	С	е	f	g	i	k	m	n	р	q	r	s	measure
(800)	1090	790**	1907	183	326	435	496	810	1041	1269	1402	1526	1672	262	800	28	500	1945
(1000)	1090	790**	2197	183	369	468	569	955	1186	1472	1596	1759	1942	370	800	100	500	2230
(1500)	1300	1000	2135	180	358	489	529	894	1144	1360	-	1679	1819	319	800	100	500	2154
(2500)	1500	1200	2500	250	435	560	645	1100	1352	1670	-	2003	2211	400	800	100	800	2567


G 1" (IT)

12 x

EnerVal G (4000,6000)

(Dimensions in mm)

Deviations possible as a result of manufacturing tolerances. Dimensions ± 10 mm

1	Heating connection	return discharge (inflow restrictor)
2	Heating connection	flow discharge (single-layer elbow pipe)
3	Heat generator connection	flow top (inflow restrictor)
4	Heat generator connection	return top (inflow restrictor)

Heat generator connection flow bottom (inflow restrictor)

Heat generator connection return bottom (inflow restrictor) 6

Sleeve for immersion sleeve, thermostat or thermometer 7

3 sensor terminal strips 8

Possible air vent 10

Separating plate 11

11a Holes in the separating plate

Hand-hole flange (flange-mounted electric heating element) 13 Outside Ø 257 mm,

15 Transport strap

The screw holes have threads

Type (4000,6000)	pitch circle
DN 125, 8 x M16*, PN 6 DN 125, 8 x M16*, PN 6 DN 100, 4 x M16*, PN 6 G ½" (IT)	, 200 mm , 170 mm , 170 mm , 170 mm
G 1" (IT)	

24 x

nange-mounted electric reating element)	
, pitch circle Ø 225 mm, 10 x M10	

EnerVal G													Tilting	
type	D	Н	а	b	С	е	f	g	i	k	m	n	р	measure
(4000) (6000)		2696 3802					1202 1704							2773 3858

Buffer storage tank - cold storage tank EnerVal G cool (800,1000)

- · Steel buffer storage tank for the hydraulic integration of energy generators, coating with water-based paint
- Cold insulation made of synthetic rubber (19 mm), glued on diffusion-proof, with outer plastic jacket (red)
- 8 connection flanges DN 65 (PN 16)
- 2 connection flanges DN 80 (PN 16)
- 1 sleeve G 11/2" (IT) for electric heating element

- 1 sleeve G 1" (IT) for ventilation
- · Perforated separating plate in the central area for separation of the temperature zones
- · Flow diversions permanently installed

Delivery

Cold storage tank mounted with cold insulation (glued on diffusion-proof)

Buffer storage tank - cold storage tank EnerVal G cool (1500,2500)

- · Steel buffer storage tank for the hydraulic integration of energy generators, coating with water-based paint
- Cold insulation made of synthetic rubber (19 mm), glued on diffusion-proof, with outer plastic jacket (red)
- 8 connection flanges DN 80 (PN 16)
- 2 connection flanges DN 100 (PN 16)
- 1 sleeve G 11/2" (IT) for electric heating element
- 5 sleeves G 1/2" (IT) for sensor/thermometer
- 1 sleeve G 1" (IT) for ventilation
- Perforated separating plate in the central area for separation of the temperature zones
- · Flow diversions permanently installed

Delivery

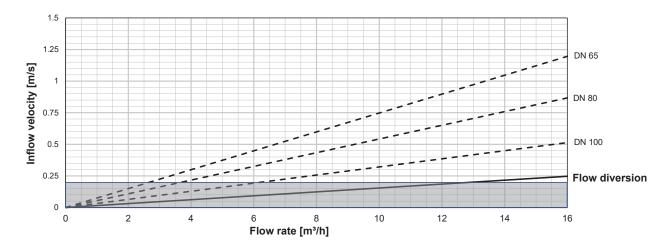
· Cold storage tank mounted with cold insulation (glued on diffusion-proof)

Buffer storage tank - cold storage tank EnerVal G cool (4000,6000)

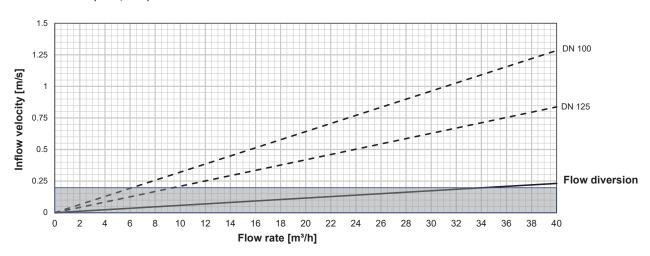
- · Steel buffer storage tank for the hydraulic integration of energy generators, coating with water-based paint
- Cold insulation made of synthetic rubber (19 mm), glued on diffusion-proof, with outer plastic jacket (red)
- 8 connection flanges DN 100 (PN 16)
- 2 connection flanges DN 125 (PN 16)
- 1 sleeve G 11/2" (IT) for electric heating
- 5 sleeves G 1/2" (IT) for sensor/thermometer
- 1 sleeve G 1" (IT) for ventilation
- Perforated separating plate in the central area for separation of the temperature zones
- · Flow diversions permanently installed

Delivery

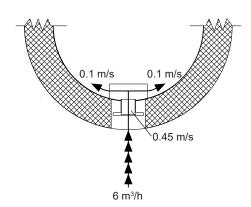
Cold storage tank mounted with cold insulation (glued on diffusion-proof)


Range EnerVal G cool	Nominal content	Operating pressure
type	I	bar
(800)	793	6
(1000)	889	6
(1500)	1440	6
(2500)	2518	6
(4000)	4035	6
(6000)	5849	6

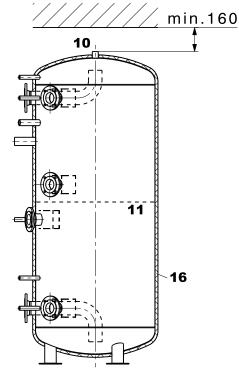
EnerVal G cool (800-6000)

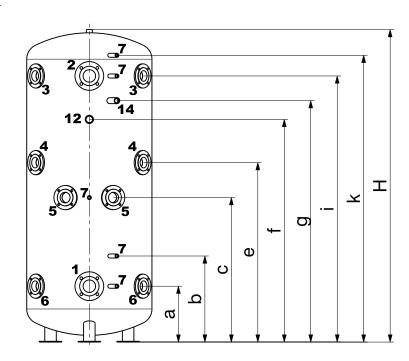

Туре		(800)	(1000)	(1500)	(2500)	(4000)	(6000)
Volume	I	793	889	1440	2518	4035	5849
Max. operating/test pressure	bar	6/8	6/8	6/8	6/8	6/8	6/8
Min. operating temperature	°C	5	5	5	5	5	5
Max. operating temperature	°C	85	85	85	85	85	85
 Cold insulation synthetic rubber 	mm	19	19	19	19	19	19
• Cold insulation λ 0 °C	W/mK	0.033	0.033	0.033	0.033	0.033	0.033
• Cold insulation λ 40 °C	W/mK	0.037	0.037	0.037	0.037	0.037	0.037
Fire protection class		B-s3,d0	B-s3,d0	B-s3,d0	B-s3,d0	B-s3,d0	B-s3,d0
Transport weight	kg	171	189	306	468	694	902
 Water vapour diffusion resistance μ 		≥ 7000	≥ 7000	≥ 7000	≥ 7000	≥ 7000	≥ 7000
• Dimensions				200.0	limonoional d	rowing	

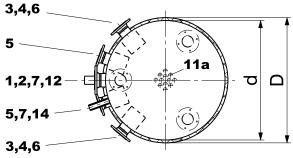
• Dimensions see dimensional drawing


Velocity into the connection nozzle and inflow velocity with flow diversion EnerVal G cool (800-2500) $\,$

EnerVal G cool (4000,6000)




Example of inlet velocity distribution by flow diversions EnerVal G cool (800,1000)



EnerVal G cool (800-6000)
Dimensions incl. cold insulation (series)
(Dimensions in mm)

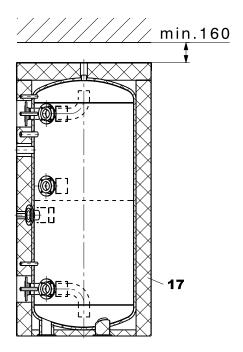
Deviations possible as a result of manufacturing tolerances. Dimensions ± 10 mm

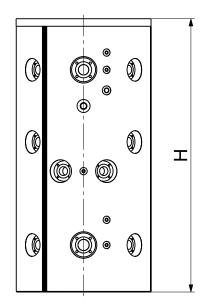
Type (800-6000)	pitch circle Ø
DN 65, PN 6	130 mm
DN 80, PN 6	150 mm
DN 100, PN 6	170 mm
DN 125, PN 6	200 mm

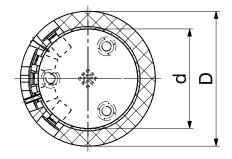
1	Cooling connection	flow discharge (bend pipe)
2	Cooling connection	return discharge (bend pipe)
3	Cold generator connection	return top (inflow restrictor)
4	Cold generator connection	flow top (inflow restrictor)
5	Cold generator connection	return bottom (inflow restrictor)
6	Cold generator connection	flow bottom (inflow restrictor)
7	Sleeve for immersion sleeve	e, thermostat or thermometer
10	Possible air vent	
11	Separating plate	
11a	Holes in the separating plat	e
12	Connection for electric heat	ing element
14	Connection for circulation la	ance, attention: only for type (800,10

	Type (800,1000)	Type (1500,2500)	Type (4000,6000)
	DN 80, 4 x M16* DN 80, 4 x M16* DN 65, 4 x M12* DN 65, 4 x M12* DN 65, 4 x M12* DN 65, 4 x M12* G ½" (IT) G 1" (IT)	DN 100, 4 x M16* DN 100, 4 x M16* DN 80, 4 x M16* DN 80, 4 x M16* DN 80, 4 x M16* DN 80, 4 x M16* G ½" (IG) G 1" (IG)	DN 125, 8 x M16* DN 125, 8 x M16* DN 100, 4 x M16* DN 100, 4 x M16* DN 100, 4 x M16* DN 100, 4 x M16* G ½" (IT) G 1" (IT)
	12 x	12 x	24 x
1000)	G 1½" (IT) G 1" (IT)	G 1½" (IT)	G 1½" (IT)

Cold insulation, thickness 19 mm


The screw holes have threads


Dimension for transport into building = D


EnerVal G cool

type	D**	d	Н	а	b	С	е	f	g	i	k	Tilting measure
(800)	828	790	1866	327	496	810	1041	1269	1402	1527	1684	1882
(1000)	828	790	2066	369	569	955	1186	1472	1596	1759	1894	2080
(1500)	1028	990	2140	378	549	914	1164	1380	-	1699	1916	2158
(2500)	1288	1250	2448	435	645	1050	1302	1595	-	1903	2211	2475
(4000)	1438	1400	2975	485	780	1386	1638	2227	-	2535	2735	2999
(6000)	1638	1600	3303	523	840	1473	1873	2523	-	2823	3023	3342

EnerVal G cool (800-6000)
Dimensions with thermal insulation (optional) (Dimensions in mm)

Deviations possible as a result of manufacturing tolerances.

Dimensions ± 10 mm

Thermal insulation, thickness (in addition to the 19 mm cold insulation) Type (800,1000) 120 mm

Type (1500,2500) Type (4000,6000) 140 mm

140 mm

EnerVal G cool

type	D	d	Н
(800)	1068	790	1961
(1000)	1068	790	2161
(1500)	1308	990	2255
(2500)	1568	1250	2563
(4000)	1718	1400	3090
(6000)	1918	1600	3418

Condensing Boilers

Operational reliability for local and district heating networks

Hoval's gas and oil condensing boilers offer a highly efficient and cost-effective heating solution for a wide range of applications. Thanks to state-of-the-art condensing technology, these systems maximise energy use by recovering heat from exhaust gases, reducing waste and lowering energy costs.

Our floor-mounted gas condensing boilers stand out for their reliability, power, and compact design, making them ideal for both new installations and retrofit projects. The integrated heat exchangers ensure long-lasting, economical operation, while Hoval's advanced technology prepares your system for the future—our gas boilers are already configured to run on 100% biomethane (green gas) and hydrogen blends, supporting a more sustainable heating approach.

For buildings that rely on oil heating, Hoval's UltraOil® condensing boiler provides an exceptionally high level of efficiency. By utilizing condensing technology, UltraOil® recovers heat from exhaust gases, ensuring minimal fuel consumption and reduced emissions. This makes it a sustainable and future-proof choice for sites where oil remains the preferred energy source.

With a wide range of output options and flexible system combinations, Hoval gas and oil condensing boilers deliver powerful, economical, and future-ready heating for commercial and industrial applications.

Hoval's condensing boiler portfolio includes:

- TopGas® Max
- UltraGas® 2
- UltraOil

Hoval TopGas® max (50-150)

Wall-hanging gas condensing boiler

- · With condensing boiler technology
- · For the combustion of:
 - natural gas E
 - natural gas E with a hydrogen content (H₂) of up to 20 % by vol.
 - propane according to DIN 51622
 - biomethane according to EN 16723
- · Heat exchanger made of stainless steel
- · Built-in:
 - water pressure guard for water shortage protection
 - flue gas temperature sensor with flue gas limiter function
 - automatic quick aspirator
- · Integrated backflow check valve on the combustion air side
- Pre-mixing surface burner made of stainless steel
 - Modulating with gas/air group control
 - Automatic ignition
 - Ionisation guard
- · Minimum water flow necessary (see technical data)
- Wall-hanging gas condensing boiler fully clad with coated white steel plates

Basic boiler control panel

- Automatic function device with monitoring
- Modulating burner control
- Operation and fault indication

- Propane
- · Free-standing calorifier

Delivery

Wall-hanging gas condensing boiler fully clad with fastening material for wall installation

Model range TopGas® max Nominal heat output 50/30 °C type kW (50)9.1-49.9 (65)14.9-69.9 (100)22.3-102.0 26.3-125.3 (125)(150)29.8-150.4

Energy efficiency class of the compound system with control

A*** → D

TopGas® max M

with integrated automatic function device LMS14 including control panel

Control panel

- · Digital screen display
- Pushbuttons and rotary knob for operation
- Fault signalling lamp
- Information display

Control functions

- Control functions integrated for
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit

Operating mode selection

- · Heating curve setting
- · Hot water temperature setting
- Day programs/week programs
- Frost protection function
- Display of fault messages
- Error acknowledgement key
- Chimney sweep function key (safety temperature limiter test)

Options for controller

- Can be expanded with:
 - Room control unit
 - Cascade module
- · Can be networked with up to 8 automatic function devices in total

Delivery

Heating controller set separately packed, mounting on site

TopGas® max C

without control panel with integrated cascade

For TopGas® max C (cascade) in combination with the TopGas® max M

Up to 7 TopGas® max C can be networked with the LMS14 of the TopGas® max M.

Cascade module separately packed, installation on-site

Observe the notices on water quality, see "Engineering"!

Modbus connection

to TopTronic® E

For controlling the TopGas® max M by the TopTronic® E using a temperature signal. Various data points are transferred from the LMS14 automatic function device to the TopTronic® E (Modbus module see Accessories).

BMS connection 0-10 V (building management system)

For control of the TopGas® max as part of a building management system

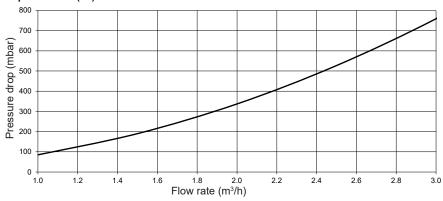
Temperature or performance control

external with 0-10 V Integrated in the boiler

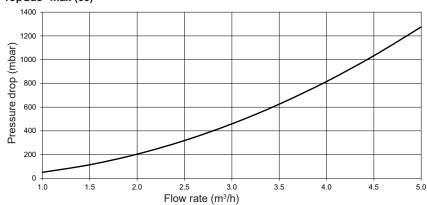
TopGas® max (50-150)

Тур	ð			(50)	(65)	(100)	(125)	(150)
NNNN	ominal heat output at 80/60 °C, natural gas ¹) ominal heat output at 50/30 °C, natural gas ¹) ominal heat output at 80/60 °C, propane ²) ominal heat output at 50/30 °C, propane ²) ominal heat input with natural gas ³) ominal heat input with propane ²)		kW kW kW kW kW	7.8-45.9 9.1-49.9 7.8-45.3 9.1-49.9 8.2-47.1 8.5-47.1	13.0-66.2 14.9-69.9 13.5-68.1	19.4-94.1 22.3-102.0 19.4-94.1 22.3-102.0 20.1-96.7 20.4-96.7	26.3-125.3 22.5-113.9 26.3-125.3 24.2-116	29.8-150.4 25.7-138.3
• O	perating pressure heating min./max. (PMS) perating temperature max. (T _{max}) piler water content (V _(H2O)) ow resistance boiler		bar °C I z value	0.8-3 90 3.0	0.8-4.5 90 4.5	0.8-6 90 6.5 see diagran	0.8-6 90 8 n	0.8-6 90 9.5
	inimum circulation water quantity oiler weight (without water content, incl. cladding)		l/h kg	2000 42	2800 53	4100 66	5200 74	5900 89
• B	oiler efficiency at 80/60 °C in full-load operation (NCV/GCV) ⁴⁾ oiler efficiency at 30 % partial load (EN 15502) (NCV/GCV) ⁴⁾ oom heating energy efficiency (A+++ \rightarrow D)	class	% %	97.6/87.9 107.9/97.2 A		98.2/88.5 108.1/97.4	98.2/88.5 107.8/97.1	98.2/88.5 107.9/97.2
-	without control with control with control and room sensor annual energy consumption	$ \eta_{s} $ $ \eta_{s} $ $ \eta_{s} $ $ Q_{HE} $	% % % GJ	92 94 96 83	92 94 96 124	92 94 96 177	92 94 96 213	92 94 96 257
	itrogen oxide emissions (EN 15502) (GCV)	NOx	mg/ kWh	37.8	28.1	26.4	42.9	34.1
	₂ content in flue gas at min./max. nominal heat output eat loss in standby mode		% Watt	5.6/4.8 350	5.6/4.8 356	5.6/4.6 362	5.3/4.2 368	5.3/4.2 374
• D	imensions			:	see table o	f dimensions	S	
-	as flow pressure min./max. Natural gas E/LL Propane as connection values at 15 °C/1013 mbar:		mbar mbar	18-50 37-50	18-50 37-50	18-50 37-50	18-50 37-50	18-50 37-50
-	Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) – NCV = 24.4 kWh/m³ ²		m³/h m³/h m³/h	0.8-4.9 1.0-5.8 0.3-1.9	1.4-7.0 1.7-8.4 0.6-2.8	2.1-10.0 2.5-11.9 0.8-4.0	2.5-12.0 3.0-14.3 1.3-4.8	2.7-14.5 3.3-17.3 1.1-5.8
MS¹Ty	perating voltage in./max. electrical power consumption (incl. pump) tand-by /pe of protection ermitted ambient temperature during operation		V/Hz Watt Watt IP °C	230/50 16/75 4 X4D 5-40	230/50 22/115 4 X4D 5-40	230/50 33/139 4 X4D 5-40	230/50 35/226 3 X4D 5-40	230/50 27/297 4 X4D 5-40
	ound power level Heating noise (EN 15036 Part 1) (room air dependent)		dB(A)	53	53	53	51	51
	ondensate quantity (natural gas) at 50/30 °C H value of the condensate		l/h	4.5 4-6	6.6 4-6	9.3 4-6	11.2 4-6	13.6 4-6
• C	onstruction type			B23P, C13(x), C33(x), C	C43(x), C53(x	c), C63(x), C8	3(x), C93(x)
-	ue gas system Temperature class Flue gas mass flow at max. nominal heat input Flue gas mass flow at min. nominal heat input Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Max. permissible temperature of the combustion air Flow rate combustion air Maximum supply pressure for combustion air supply and flue gas line Maximum draught/depression at flue gas outlet	dry dry	kg/h kg/h °C °C °C °C Nm³/h Pa	T120 73 12 82.2 69.9 41.0 105 60 50 -50	T120 101 20 75.8 60.9 35.5 105 83 100 -50	T120 150 30 76.3 60.4 34.6 105 117 100 -50	T120 182 35 76.7 59.9 32.5 105 141 150 -50	T120 208 40 73.0 59.7 30.6 105 171 200 -50

¹⁾ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

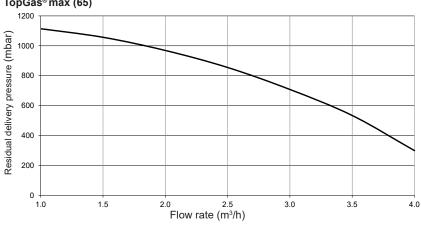

 $^{^{\}rm 2)}$ Data related to NCV. The TopGas $^{\rm 8}$ max is also suitable for propane/butane (liquid gas) mixtures.

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

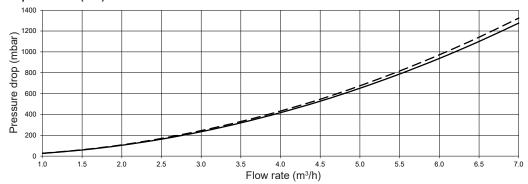

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Flow resistance on the heating water side

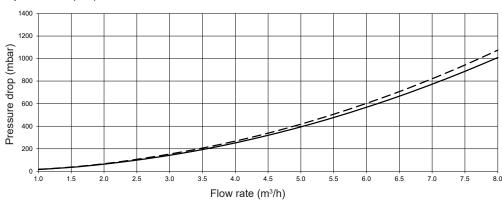

TopGas® max (50)


TopGas® max (65)

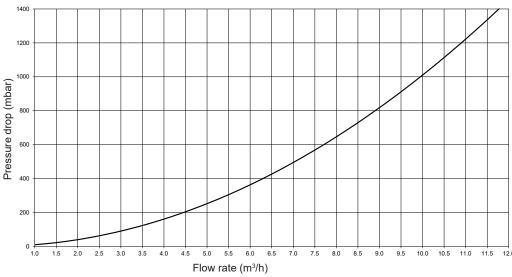
Maximum residual delivery pressure of heating pump with connection set AS32-TG max SPS-I 10 TopGas® max (50)



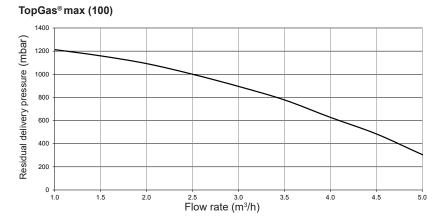
Maximum residual delivery pressure of heating pump with connection set AS32-TG max SPS-I 12 TopGas® max (65)



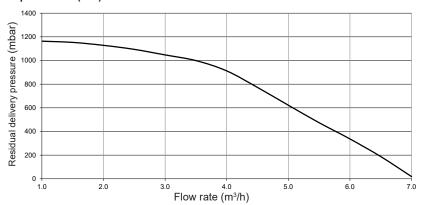
Flow resistance on the heating water side

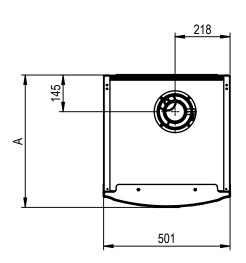

TopGas® max (100)

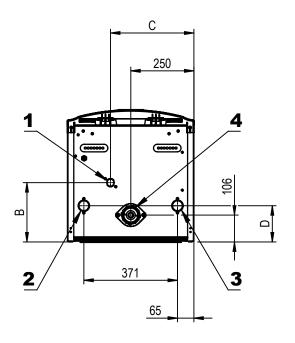
TopGas® max (125)

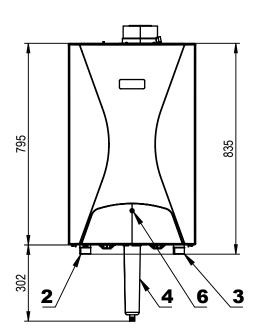


TopGas® max (150)

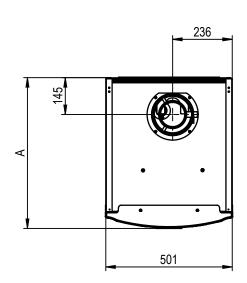


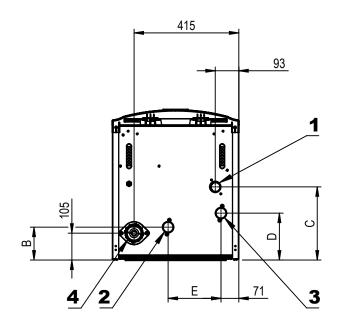

${\bf Maximum\ residual\ delivery\ pressure\ of\ heating\ pump\ with\ connection\ set\ AS40-TG\ max\ SPS-I\ 12}$

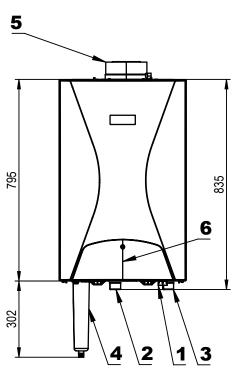



TopGas® max (125)

TopGas® max (50,65) (Dimensions in mm)

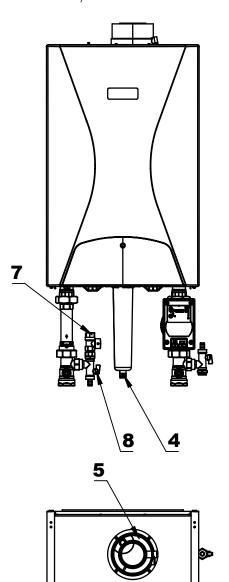


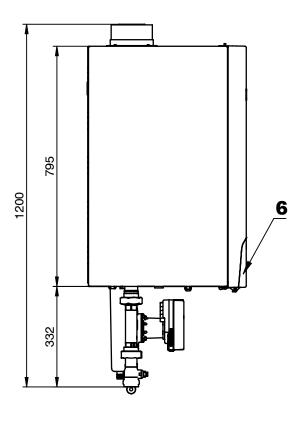



TopGas [®] max type	Α	В	С	D
(50)	525	235	330	143
(65)	590	260	445	105

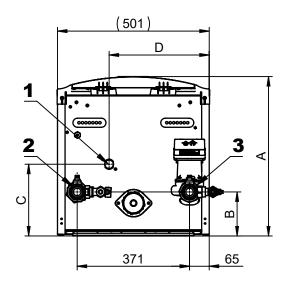
- Gas connection 3/4" Flow heating 11/4"
- 2 Return heating 11/4"
- Condensate drain
- Flue gas/combustion air connection 80/125 mm Cover control panel 5

TopGas® max (100-150) (Dimensions in mm)

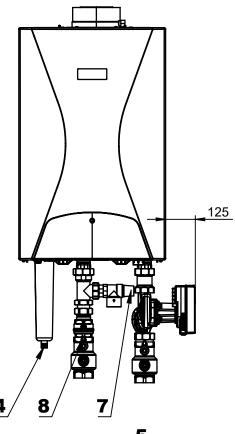


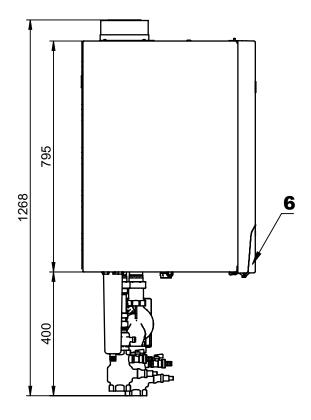


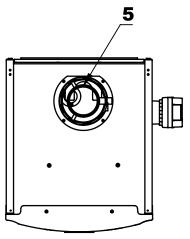
TopGas® max type	А	В	С	D	E
(100)	590	130	290	185	209
(125)	660	130	365	185	209
(150)	730	210	437	210	199

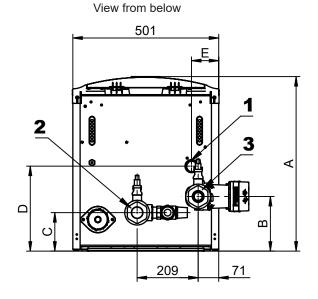

- Gas connection Flow heating 11/4" 3 11/4" Return heating
- 4 5 6 Condensate drain
- Flue gas/combustion air connection 100/150 mm Cover control panel

$\text{TopGas}^{\circledast}$ max (50,65) with connection set DN 32 (Dimensions in mm)


View from below




TopGas [®] max type	Α	В	С	D
(50) with AS32-TG max SPS-I 10	525	143	235	330
(65) with AS32-TG max SPS-I 12	590	105	260	445


- Gas connection
- Flow heating Return heating
- 3 11/4"
- Condensate drain 40
- LAS flue gas/combustion air connection 80/125 mm
- Cover control panel
- 7 Safety valve KFE ball valve

TopGas $^{\otimes}$ max (100,125) with connection set DN 40 (Dimensions in mm)

TopGas® max						
type	Α	В	С	D	E	
(100) with AS40-TG max SPS-I 12	590	185	130	290	93	
(125) with AS40-TG max SPS-I 12	660	185	130	365	93	

- Gas connection
- Flow heating 1½" (AS 1½") 1¼" (AS 1½") 2
- 3 Return heating
- Condensate drain 40
- LAS flue gas/combustion air connection 100/150 mm
- Cover control panel
- Safety valve
- 8 KFE ball valve

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, etc.) as well as the corresponding regional regulations.

The following standards and guidelines must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DVGW directives
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems

Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water must be fully demineralised.

Heating water

- In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- pH value of the heating water for systems with aluminium alloy as water-side material 8.0 to 8.5 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- The following systems must be equipped with separate circuits:
 - Systems operated with softened water.
 - Plants with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up).
- In the case of bivalent heating systems, the values of the heat generator with the strictest requirement for water quality must be complied with.
- If only the boiler is replaced in an existing plant, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

see separate engineering sheet "Use of frost protection agent".

Heating room

Boilers cannot be positioned in rooms in which halogen compounds can occur and into which combustion air can enter (e.g. wash-, dryer-, work room, hairdressers and so on). Halogen compounds can be caused by cleaning and degreasing solutions, dissolvents, glue and bleaching lyes.

Combustion air supply

The supply of combustion air must be guaranteed. There must be no possibility to close the air supply opening. For direct combustion air supply (LAS system), use the separator C80/125 -> E80 PP or C100/150 -> E100 PP.

The minimum free cross-section for the combustion air can be assumed simplified as follows:

- Room air-independent operation with separate combustion air pipe to the boiler:
 0.8 cm² per 1 kW of output. The pressure drop in the combustion air pipe must be considered for the calculation of the flue gas system.
- Room air-dependent operation:
 Minimum free cross-section of the opening into the open: 150 cm² or twice 75 cm² and additionally 2 cm² necessary for each kW of output over 50 kW for vent in to the open.

Gas connection Commissioning

- Initial commissioning is only allowed to be carried out by a qualified installer.
- Burner setting values according to the installation instructions.

Manual gas shut-off valve and gas filter

Immediately in front of the boiler a manual gas shut-off device (valve) must be installed according to relevant regulations. Should the local regulations or conditions demand this, an approved gas filter must be installed in the gas supply pipe between the gas tap and the boiler in order to prevent malfunction due to foreign particles being carried along with the gas.

Type of gas

The boiler is only to be operated with the type of gas stated on the rating plate.

Gas pressure natural gas:

Necessary gas flow pressure at the boiler inlet:

natural gas min. 18 mbar, max. 50 mbar

Propane gas pressure:

- For propane, a gas pressure regulator must be provided on site for reducing the pilot pressure on the boiler
- Required gas flow pressure at the boiler entry: propane min. 37 mbar, max. 50 mbar

Gas pressure regulator

- The installation of a gas pressure regulator is only necessary if the gas flow pressure in the gas network exceeds the maximum permissible gas flow pressure of the TopGas $^{\! \scriptscriptstyle \otimes}$ max or if there are considerable fluctuations in the gas flow pressure.
- Pressure fluctuations in the gas network must be prevented by suitable measures (e.g. gas storage tanks or pressure regulators). The local conditions must be checked in each individual case

Sludge separator

The installation of a sludge separator with magnetic ring is mandatory in the gas boiler return.

Minimum heating water circulation quantity

- Depending on the boiler type, different minimum circulating water quantities are required through the boiler. For details, see the corresponding data sheets.
- During burner operation, the circulating pump must be constantly in operation and the minimum heating water circulation quantity must be guaranteed.
- After each burner switch-off, the circulating pump must be in operation for at least 2 minutes (is guaranteed by the boiler controller).

Heating boiler in the attic

A water pressure guard is built in in the boiler, which automatically turns the gas burner off in case of water shortage. Notice: Mount the diaphragm pressure expansion tank in the heating flow and the pump in the heating return. See also paragraph "diaphragm pressure expansion tank"!

Condensate drainage

- · A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority or sewer operator.
- The condensate from the flue gas line can be discharged via the boiler. A condensate trap is no longer needed in the flue gas system
- The condensate must be conducted openly (funnel) into the sewage system.

- · Suitable materials for condensate drain:
 - stoneware pipes
 - pipes made from glass
 - pipes made from stainless steel
 - pipes made from plastic: PVC, PE, PP, ABS and UP

Diaphragm pressure expansion tank

- An adequately dimensioned diaphragm pressure expansion tank must be provided.
- The minimum inlet pressure in the diaphragm pressure expansion tank must be 1.2 bar and the minimum operating pressure in the boiler must be 1.5 bar.
- The pump must be connected in the heating return and the diaphragm pressure expansion tank must be connected on the pump suction side.
- If the aforementioned minimum operating pressure in the boiler of 1.5 bar cannot be maintained (e.g. roof heating centres), the diaphragm pressure expansion tank must be installed in the heating flow.
- Starting from 70 °C an additional intermediate tank is necessary.

Flue gas system

- The flue gas must be routed through a tested and approved flue gas line.
- Flue gas lines must be gas-, condensateand over pressure-tight.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas system must be connected with an angle, so that the resulting condensate of the flue gas system can flow back to the boiler and can be neutralised there before discharging into the canalisation.
- Gas boilers with condensation heat utilisation are to be connected to a flue gas line min. temperature class T120.
- · A flue gas temperature limiter is integrated into the boiler.

Allocation of gas filters for TopGas® max (50-150)

TopGas [®] max type	Gas throughput natural gas E m³/h	Gas filter type	Dimension	Pressure drop gas filter (with clean filter) mbar
(50)	4.9	70612/6B	Rp 3/4"	0.15
(65)	7.0	70612/6B	Rp 3/4"	0.30
(100)	10.0	70602/6B	Rp 1"	0.15
(125)	12.0	70602/6B	Rp 1"	0.23
(150)	14.5	70602/6B	Rp 1"	0.30

It is essential to set the dimensions of the gas line!

Table "Standard values for flue gas line dimensions"

	Boiler	Smooth-walled flue gas line		umber of gas + cor		
TopGas [®] max	Internal Ø flue gas outlet	Designation	Total pipe length in m (flue gas + combustion air)			
type	mm	DN	1	2	3	4
(50)	80	100	30	30	30	13
(65)	80	100	30	30	30	17
(100)	100	130	30	30	30	30
(125)	100	130	30	30	30	30
(150)	100	130	30	30	30	30

Notice: A T-piece on the boiler connection fitting has already been taken into account for the flue gas line dimensioning. The values in the table "Standard values for flue gas line dimensions" are standard values for reference.

An exact calculation for the flue gas line must be made on site.

For chimney systems above 25 m effective height, negative pressure in the chimney is to be expected in some operating conditions. Therefore, we recommend an individual design of the chimney system and checking the individual pressure conditions.

Hoval UltraGas® (15-100)

Gas condensing boiler

- · Steel boiler with condensation technology
- · For the combustion of:
 - natural gas E
 - natural gas E with a hydrogen content (H₂) of up to 20 % by vol.
- propane according to DIN 51622
- biomethane according to EN 16723
- · Combustion chamber made of stainless steel
- Maximal flue gas condensation through downstream heating surface made of aluFer® stainless steel bounded pipe; heating gas side: aluminium water side: stainless steel
- · Thermal insulation with mineral wool mat
- Water pressure sensor (minimum and maximum pressure limiter integrated)
- Flue gas temperature sensor with flue gas limiter function
- Pre-mix burner
- with blower and venturi
- modulating operation
- automatic ignition
- ionisation guard
- gas pressure monitor
 Gas boiler fully clad with steel plate,
- red powder-coated
- · Heating connections to left and right for:
 - heating flow
- high temperature return
- low temperature return
- UltraGas® (15-50):

Flue gas connection backwards to the top

- UltraGas® (70,100): concentrical supply air/flue gas connection, vertically upwards, horizontally to rear as option, see accessories and dimension sheet
- TopTronic® E controller installed
- Possibility of connecting an external gas solenoid valve with error output

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- · Fault message management
- Analysis function
- · Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

Model ra UltraGas type	-	Nominal hea output 50/30°C kW		
(15)	Α	3.0-15.2		
(20)	Α	4.0-20.2		
(27)	Α	5.0-26.9		
(35)	Α	5.8-34.3		
(50)	Α	8.0-48.8		
(70)	Α	13.5-69.0		
(100)		20.9-99.0		
	$A^{\scriptscriptstyle +++} \to D$			

Energy efficiency class of the compound system with control.

TopTronic® E basic module heat generator TTF-WF7

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management
- · Outdoor sensor
- · Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- · RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion
- module expansion heating circuit or
- module expansion heat balancing or
- module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Optional

- For propane
- Free-standing calorifier see Calorifiers
- Flue gas systems

Delivery

Floor-standing gas condensing boiler fully clad

Hoval UltraGas® (15-27)

Туре			(15)	(20)	(27)
• Nominal heat output at 80/60 °C, natural gas ¹⁾		kW	3.0-14.3	3.8-18.7	4.5-25.0
• Nominal heat output at 50/30 °C, natural gas ^{1), 2)}		kW	3.0-15.2	4.0-20.2	5.0-26.9
• Nominal heat output at 80/60 °C, propane 3)		kW	4.5-13.8	4.9-18.6	6.6-24.3
• Nominal heat output at 50/30 °C, propane ²⁾		kW	4.8-15.3	5.2-20.7	7.3-27.0
 Nominal heat input with natural gas ⁴⁾ 		kW	2.9-14.5	3.8-18.9	4.7-25.4
Nominal heat input with propane 3)		kW	4.7-14.3	5.1-19.3	6.8-25.2
Operating pressure heating min./max. (PMS)		bar	1/3	1/3	1/3
 Operating temperature max. (T_{max}) 		°C	85	85	85
• Boiler water content (V _(H20))		1	57	55	51
• Flow resistance boiler ⁵⁾		z value	3.5	3.5	3.5
Minimum circulation water quantity		l/h	-	-	-
Boiler weight (without water content, incl. cladding)		kg	176	179	186
Boiler efficiency at 80/60 °C in full-load operation (NCV	,	%	97.5/87.8	97.0/88.1	97.9/88.2
Boiler efficiency at 30 % partial load operation (NCV/Go	CV)	%	107.9/97.2	108.0/97.3	108.0/97.3
Room heating energy efficiency without control	ηs	%	92	92	92
- with control	ης	%	94	94	94
- with control and room sensor	ης	%	96	96	96
• NOx class (EN 15502)			-	-	-
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	33	33	32
• O ₂ -content in flue gas at min./max. nominal heat output		%	5.5/5.1	5.5/5.1	5.5/5.1
Heat loss in standby mode		Watt	160	160	160
Dimensions			se	e table of dimensior	ns
Gas flow pressure min./max.					
- Natural gas E/LL		mbar	17.4-50	17.4-50	17.4-50
- Propane		mbar	37-50	37-50	37-50
 Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.97 kWh 	/m 3	m ³ /h	0.29-1.45	0.38-1.90	0.47-2.55
- Natural gas E = (Wo = 15.0 kWh/m³) NCV = 9.97 kWf - Natural gas LL = (Wo = 12.4 kWh/m³) NCV = 8.57 kWf		m ³ /h	0.34-1.69	0.44-2.21	0.55-2.96
- Propane (NCV = 25.9 kWh/m³)	11/111	m ³ /h	0.18-0.55	0.20-0.75	0.26-0.97
Operating voltage		V/Hz	230/50	230/50	230/50
Electrical power consumption min./max.		Watt	20/44	22/62	20/56
• Stand-by		Watt	9	9	9
Type of protection		IP	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40
Sound power level					
- Heating noise (EN 15036 Part 1) (room air dependent	•	dB(A)	57	62	66
- Flue gas noise radiated from the mouth (DIN 45635 P	art 47)	dB(A)	43	49	55
(room air dependent/independent of room air) - Sound pressure level heating noise (depending on ins	tallation	dB(A)	50	56	59
conditions) ⁶⁾	dialion	GB(/T)	00	00	00
Condensate quantity (natural gas) at 40/30 °C		l/h	1.3	1.8	2.4
• pH value of the condensate		approx.	4.2	4.2	4.2
Construction type			В	23, B23P, C53, C63	3
Flue gas system					
- Temperature class			T120	T120	T120
- Flue gas mass flow at max. nominal heat input (dry)		kg/h	23	31	42
- Flue gas mass flow at min. nominal heat input (dry)	1.00/00 %C	kg/h	4.7	6	7.1
 Flue gas temperature at max. nominal heat output and Flue gas temperature at max. nominal heat output and 		°C	62 45	63 45	64 45
Flue gas temperature at max. nominal heat output and Flue gas temperature at min. nominal heat output and		°C	45 31	45 31	45 31
Max. permissible temperature of the combustion air	55,00	°C	50	50	50
- Flow rate combustion air		Nm³/h	17	23	31
- Maximum supply pressure for combustion air supply a	ind flue gas line	Pa	100	100	100
- Maximum draught/depression at flue gas outlet		Pa	-30	-30	-30

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100, an output reduction of up to 7 % is possible.

²⁾ Factory measurements

³⁾ Data related to NCV.

⁴⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible (readjustment might be necessary).

⁵⁾ Flow resistance boiler in mbar = flow rate (m³/h)² x z; resp. see diagrams

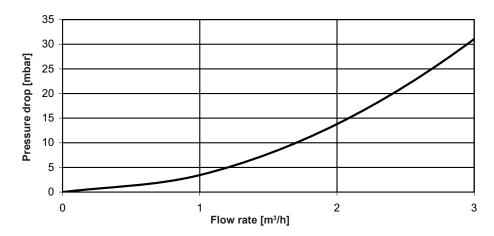
⁶⁾ Compare notice at "Engineering".

Hoval UltraGas® (35-100)

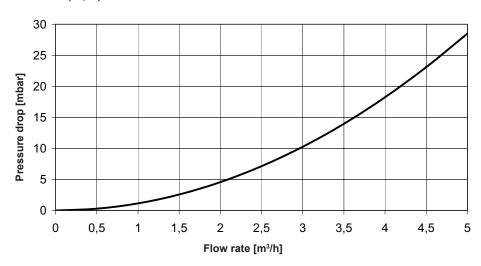
Туре			(35)	(50)	(70)	(100)
• Nominal heat output at 80/60 °C, natural gas 1)		kW	5.2-33.0	7.5-46.0	12.1-64.5	19.0-92.0
• Nominal heat output at 50/30 °C, natural gas ^{1), 2)}		kW	5.8-34.3	8.0-48.8	13.5-69.0	20.9-99.0
• Nominal heat output at 80/60 °C, propane 3)		kW	6.9-32.2	9.9-45.5	15.4-63.3	23.0-92.0
• Nominal heat output at 50/30 °C, propane ²⁾		kW	7.6-34.3	10.9-49.9	17.1-69.0	25.0-99.0
Nominal heat input with natural gas ⁴⁾		kW	5.4-33.3	7.7-46.9	12.5-65.5	19.6-94.1
Nominal heat input with propane 3)		kW	7.2-33.4	10.2-47.2	16.0-65.5	23.8-94.1
Operating pressure heating min./max. (PMS)		bar	1/3	1/3	1/4	1/4
Operating temperature max. (T _{max})		°C	85	85	85	85
Boiler water content (V _(H20))		1	81	75	157	144
• Flow resistance boiler ⁵⁾		z value	1.1	1.1	1.5	1.5
Minimum circulation water quantity		I/h	-	-	-	-
Boiler weight (without water content, incl. cladding)		kg	205	217	302	331
Boiler efficiency at 80/60 °C in full-load operation (No. 1).	ICV/GCV)	%	97.9/88.2	98.0/88.3	98.0/88.3	97.6/87.9
Boiler efficiency at 30 % partial load operation (NC)	,	%	108.1/97.4	108.1/97.4	108.1/97.4	108.1/97.4
Room heating energy efficiency	,					
- without control	ηs	%	92	92	92	92
- with control	ηs	%	94	94	94	94
- with control and room sensor	ηs	%	96	96	96	96
• NOx class (EN 15502)			-	-	-	-
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	26	28	28	29
• O ₂ -content in flue gas at min./max. nominal heat ou	tput	%	5.5/5.1	5.5/5.1	5.5/5.1	5.5/5.1
Heat loss in standby mode		Watt	220	220	290	290
Dimensions				see table of	dimensions	
Gas flow pressure min./max.						
- Natural gas E/LL		mbar	17.4-50	17.4-50	17.4-50	17.4-50
 Propane Gas connection values at 15 °C/1013 mbar: 		mbar	37-50	37-50	37-50	37-50
- Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.97	(AA/lp/pp ³	m ³ /h	0.54-3.34	0.77-4.70	1.25-6.57	1.97-9.44
- Natural gas E = (Wo = 15.0 kWh/m²) NCV = 9.971 - Natural gas LL = (Wo = 12.4 kWh/m²) NCV = 8.57		m³/h	0.63-3.89	0.90-5.47	1.46-7.64	2.29-10.98
	KVVII/III	m ³ /h	0.28-1.29	0.39-1.82	0.62-2.53	0.92-3.63
- Propane (NCV = 25.9 kWh/m³)						
Operating voltageElectrical power consumption min./max.		V/Hz Watt	230/50 24/95	230/50 26/119	230/50 25/91	230/50 21/230
Stand-by		Watt	24/93 9	9	25/91	9
Type of protection		IP	20	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40
Sound power level						
- Heating noise (EN 15036 Part 1) (room air depend	dent)	dB(A)	62	60	64	67
- Flue gas noise radiated from the mouth (DIN 4563		dB(A)	55	58	55	59
(room air dependent/independent of room air)						
- Sound pressure level heating noise (depending or	installation	dB(A)	55	53	57	59
conditions) 6)						
 Condensate quantity (natural gas) at 40/30 °C 		l/h	3.1	4.4	6.2	8.9
pH value of the condensate		approx.	4.2	4.2	4.2	4.2
Construction type				B23, B23P	, C53, C63	
• Flue gas system						
- Temperature class	- A	1/1.	T120	T120	T120	T120
- Flue gas mass flow at max. nominal heat input (dr		kg/h	55 8 1	78	109	157
 Flue gas mass flow at min. nominal heat input (dry Flue gas temperature at max. nominal heat output 		kg/h °C	8.1 65	11.6 68	18.8 63	29.5 65
	and duidd U	0	00	00	00	00
 Flue gas temperature at max nominal heat output 		°C	46	46	43	44
 Flue gas temperature at max. nominal heat output Flue gas temperature at min. nominal heat output 	and 50/30 °C	°C °C	46 31	46 31	43 31	44 32
 Flue gas temperature at max. nominal heat output Flue gas temperature at min. nominal heat output Max. permissible temperature of the combustion a 	and 50/30 °C and 50/30 °C		46 31 50	46 31 50	43 31 50	44 32 50
- Flue gas temperature at min. nominal heat output	and 50/30 °C and 50/30 °C	°C	31	31	31	32
Flue gas temperature at min. nominal heat outputMax. permissible temperature of the combustion a	and 50/30 °C and 50/30 °C ir	°C °C Nm³/h Pa	31 50 41 120	31 50 58 120	31 50 81 130	32 50 117 130
 Flue gas temperature at min. nominal heat output Max. permissible temperature of the combustion a Flow rate combustion air 	and 50/30 °C and 50/30 °C ir	°C °C Nm³/h	31 50 41	31 50 58	31 50 81	32 50 117

¹⁾ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100, an output reduction of up to 7 % is possible.

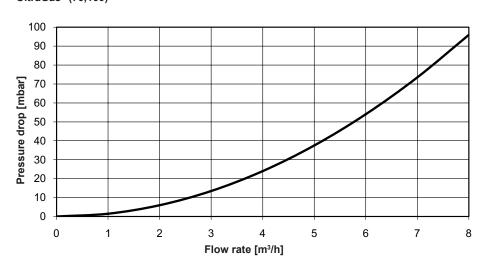
²⁾ Factory measurements

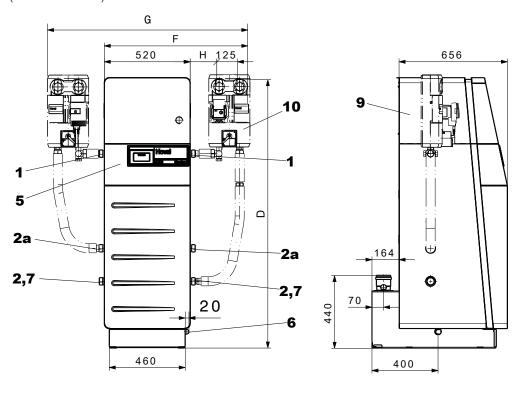

³⁾ Data related to NCV.

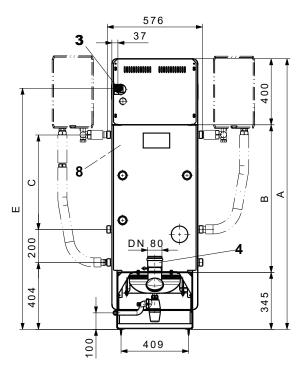
⁴⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m 3 is possible (readjustment might be necessary). Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z; resp. see diagrams


⁶⁾ Compare notice at "Engineering".

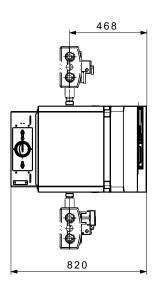
Flow resistance on the heating water side


UltraGas® (15-27)

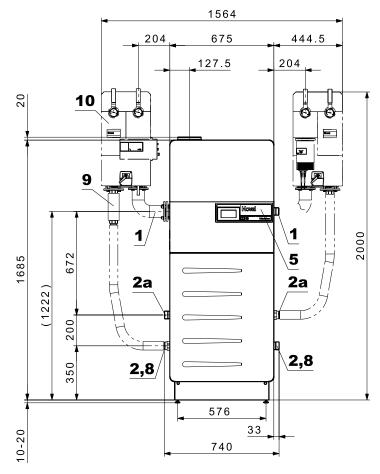

UltraGas® (35,50)

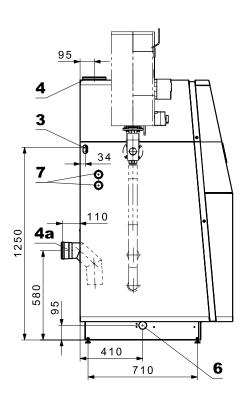


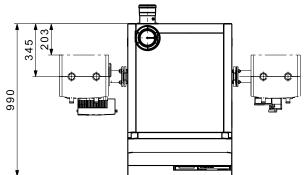
UltraGas® (70,100)



UltraGas® (15-27) with connection set AS25-S/NT/HT and armature group HA25 UltraGas® (35,50) with connection set AS32-S/NT/HT and armature group HA32 (Dimensions in mm)

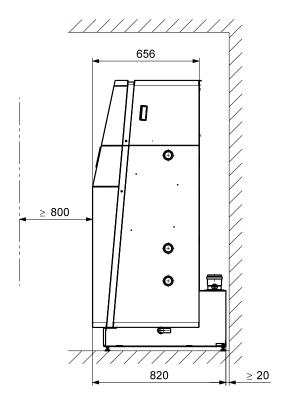

Туре	Α	В	С	D	Е	F	G	Н
UltraGas [®] (15-27) UltraGas [®] (35,50)								




Тур	e UltraGas®	(15-27)	(35,50)
1	Flow heating/safety flow	R 1"	R 1 1/4"
2	Low-temperature return	R 1"	R 1 1/4"
2a	High-temperature return	R 1"	R 1 1/4"
3	Gas connection	Rp ¾"	Rp 3/4"
4	Flue gas outlet	DN 80	DN 80
5	Control nanel		

- 5 Control panel
- 6 Condensate drain (left or right) incl. siphon (DN 25) and 2 m PVC passage tube inner Ø 19 x 4 mm
- 7 Drain
- 8 Electric cable entry point
- 9 Sound attenuation cowl
- 10 Heating armature group or charging group (option)

Hoval UltraGas $^{\circ}$ (70,100) with connection set AS40-S/NT/HT and armature group HA40 (Dimensions in mm)


Туре	e UltraGas®	(70)	(100)
1	Flow heating/safety flow	R 1½"	R 1½"
2	Low-temperature return	R 1½"	R 1½"
2a	High-temperature return	R 1½"	R 1½"
3	Duct for the gas pipe left or right	R ¾"	R ¾"
4	Concentrical supply air/flue gas connection	C100/150	C100/150
4a	Combustion air connection to the back (option)	E 100	E 100

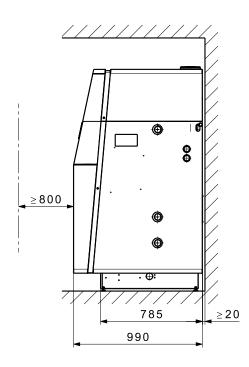
- 5 Control panel
- 6 Condensate drain (left or right) incl. siphon (DN 25) and 2 m PVC passage tube inner Ø 19 x 4 mm
- 7 Electrical connection left or right
- 8 Drain
- 9 Connection set (option)
- 10 Heating armature group or charging group (option)

Space requirement (Dimensions in mm)

UltraGas® (15-50)

Door of the boiler inclusive burner swivelling to the top and to the left or to the front.

A = minimal 150 mm *


Burner service position in the front – boiler cleaning from the right

A = optimal 300 mm *

Burner service position left – boiler cleaning from the front Boiler can be placed with the right side directly against the wall however, a minimum gap of 160 mm is required.

- without armature group,500 mm with armature group
- The cleaning opening must be well accessible.
- Boiler rear side must be accessible.

UltraGas® (70,100)

A 675
≥160*

Door of the boiler inclusive burner swivelling to the top and to the left or to the front.

A = minimal 150 mm *

Burner service position in the front – boiler cleaning from the right

A = optimal 300 mm *

. Burner service position left – boiler cleaning from the front

without armature group,
 500 mm with armature group

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, etc.) as well as the corresponding regional regulations.

The following standards and guidelines must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- · DVGW directives
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the filling and replacement water, the following conditions must be complied with:
 - Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
 - pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)

 The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Plants with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- In the case of bivalent heating systems, the values of the heat generator with the strictest requirement for water quality must be complied with.
- If only the boiler is replaced in an existing plant, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

 see separate engineering sheet "Use of frost protection agent".

Heating room

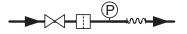
- Boilers cannot be positioned in rooms in which halogen compounds can occur and into which combustion air can enter (e.g. wash-, dryer-, work room, hairdressers and so on).
- Halogen compounds can be caused by cleaning and degreasing solutions, dissolvents, glue and bleaching lyes.

Combustion air supply

The supply of combustion air must be guaranteed. There must be no possibility to close the air supply opening. The connection for direct combustion air supply must be used for direct combustion air supply to the boiler (LAS system). It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

The minimum free cross-section for the combustion air can be assumed simplified as follows:

- Room air-independent operation with separate combustion air pipe to the boiler:
 0.8 cm² per 1 kW of output. The pressure drop in the combustion air pipe must be considered for the calculation of the flue gas system.
- In the UltraGas®, ventilation of the installation or boiler room must be guaranteed for operation independent from the room air.
- Room air-dependent operation:
 Minimum free cross-section of the opening into the open: 150 cm² or twice 75 cm² and additionally 2 cm² necessary for each kW of output over 50 kW for vent into the open.


Gas connection Commissioning

- Initial commissioning must be performed by a specialist technician from Hoval or a gas specialist technician.
- Burner setting values according to the installation instructions.

Manual gas shut-off valve and gas filter

Immediately in front of the boiler a manual gas shut-off device (valve) must be installed according to relevant regulations. Should the local regulations or conditions demand this, an approved gas filter must be installed in the gas supply pipe between the gas tap (thermally releasing) and the boiler in order to prevent malfunction due to foreign particles being carried along with the gas.

Construction of a recommended gas connection

Legend:

manual gas shut-off valve

+VVY+ gas hose/compensator

gas filter

pressure gauge with test burner and push-button valve

Type of gas

 The boiler is only to be operated with the type of gas stated on the rating plate.

Gas pressure natural gas

 Necessary flow pressure at the boiler inlet: UltraGas[®] (15-100) min. 17.4 mbar, max. 50 mbar

Gas pressure propane

- A gas pressure controller to reduce the boiler inlet pressure must be installed on-site for propane.
- Necessary gas flow pressure at the boiler inlet: UltraGas® (15-100) min. 37 mbar, max. 50 mbar

Gas pressure regulator

- The installation of a gas pressure regulator is only necessary if the gas flow pressure in the gas network exceeds the maximum permissible gas flow pressure of the UltraGas® or if there are considerable fluctuations in the gas flow pressure.
- Pressure fluctuations in the gas network must be prevented by suitable measures (e.g. gas storage tanks or pressure regulators). The local conditions must be checked in each individual case.

Closed heating system

The boiler is only approved for use in closed heating systems.

Minimum circulation water quantity

No minimum water circulation volume is required.

Calorifier connection

If a calorifier is connected, all heating groups must be provided with a mixer.

Boiler base

The boiler should be placed on a sufficiently high base (boiler base see accessories) to protect it against floor humidity and for the siphon for condensate drain.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Space requirements

See "Dimensions"

Heating boiler in the attic

 If the gas boiler is positioned on the top floor, the installation of a low water protection, which automatically turns the gas burner off in case of water shortage, is recommended.

Condensate drain

- A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority or sewer operator.
- The condensate from the flue gas line can be discharged via the boiler. A condensate trap is no longer needed in the flue gas system.
- The condensate must be conducted openly (funnel) into the sewage system.
- · Suitable materials for condensate drain:
 - stoneware pipes
 - pipes made from glass
 - pipes made from stainless steel
 - pipes made from plastic: PVC, PE, PP, ABS and UP
- A siphon must be installed at the condensate outlet on the gas boiler (included in the boiler scope of delivery).

Diaphragm pressure expansion tank

- An adequately dimensioned diaphragm pressure expansion tank must be provided.
- The diaphragm pressure expansion tank has to be installed in principle at the heating return
- Starting from 70 °C an intermediate tank is necessary.

Safety valve At the heating

 At the heating flow a safety valve must be installed. An automatic exhauster is built in the boiler

Noise damping

The following measures are possible for sound insulation:

- Make boiler room walls, ceiling and floor as solid as possible.
- If there are living areas above or below the boiler room, connect pipes flexibly using expansion joints.
- Connect circulating pumps to the piping network using expansion joints

Noise level

- The acoustic power level value is independent on the local and spacial circumstances.
- The acoustic pressure level is dependent on the installation conditions and can for instance be 5 to 10 dB(A) lower than the acoustic power level at a distance of 1 m.

Recommendation:

If the air inlet at the facade is near a noise sensitive place (window of bedroom, terrace etc.), we recommend to use a sound absorber at the direct combustion air inlet.

Flue gas system

- Gas boilers must be connected to a certified and approved flue gas system such as flue gas lines.
- Flue gas lines must be gas-, condensateand over pressure-tight.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas system must be connected with an angle, so that the resulting condensate of the flue gas system can flow back to the boiler and can be neutralised there before discharging into the canalisation.
- Gas boilers with condensation heat utilisation are to be connected to a flue gas line min. temperature class T120.
- A flue gas temperature limiter is integrated into the boiler.

Allocation of gas filters for UltraGas® (15-100)

UltraGas®	Gas throughput natural gas E m³/h	Gas filter type	Dimension	Pressure drop gas filter (with clean filter) mbar
(15)	1.5	70612/6B	Rp ¾"	0.10
(20)	1.9	70612/6B	Rp ¾"	0.10
(27)	2.6	70612/6B	Rp ¾"	0.10
(35)	3.3	70612/6B	Rp 3/4"	0.10
(50)	4.7	70612/6B	Rp 3/4"	0.13
(70)	6.6	70602/6B	Rp 1"	0.10
(100)	9.5	70602/6B	Rp 1"	0.14

It is essential to set the dimensions of the gas line!

Looking for the appropriate hydraulic schematic? Please contact your local Hoval partner.

Hoval UltraGas® 2 (125-1550)

Floor-standing gas condensing boiler

- · Floor-standing gas condensing boiler
- · For the combustion of:
 - natural gas E
 - natural gas E with a hydrogen content (H₂) of up to 20 % by vol.
 - propane according to DIN 51622
 - biomethane according to EN 16723
- · Combustion chamber made of stainless steel
- Maximum flue gas condensation by secondary heating surfaces made of TurboFer® hybrid stainless steel composite pipes; heating gas side: stainless steel/aluminium water side: stainless steel
- · Thermal insulation with mineral wool mat
- · Water pressure sensor:
 - Fulfils the function of a minimum and maximum pressure limiter
 - Replacement for the low water level protection
- Flue gas temperature sensor with flue gas limiter function
- · Pre-mix burner
 - with fan and venturi
 - modulating operation
 - automatic ignition
 - ionisation guard
 - gas pressure monitor
- Gas boiler fully clad with steel plates, red powder-coated
- Heating connections backwards incl. counter flange, screws and seals for:
 - heating flow
 - high temperature return
- low temperature return
- UltraGas® 2 (300-1550): with integrated gas pipe compensator
- TopTronic® E controller installed
- Possibility of connecting an external gas solenoid valve with error output

TopTronic® E controller

Control panel

- · Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating circuit with mixer
 - 1 heating circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management

Model range UltraGas® 2

UltraGas [®] 2 type	Nominal heat output at 50/30 °C kW
(125)	25-126
(150)	35-151
(190)	38-191
(230)	51-233
(300)	58-299
(350)	70-352
(400)	69-399
(450)	77-451
(500)	77-491
(620)	136-622
(700)	146-703
(800)	166-804
(1000)	205-999
(1100)	229-1112
(1300)	269-1320
(1550)	324-1550
H (700)	146-703
H (1100)	229-1112
H (1550)	324-1550

- · Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 - 1 module expansion:
 - module expansion heating circuit or
 - module expansion heat balancing or
 - module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator: UltraGas® 2 (125-230)

- 1 module expansion and 1 controller module or
- 2 controller modules

UltraGas® 2 (300-500):

- 3 controller modules/module expansions

UltraGas® 2 (620-1550):

- 4 controller modules/module expansions

Notice

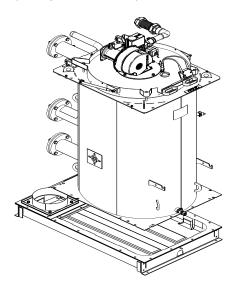
Max. 1 module expansion can be connected to the basic module heat generator TTE-WEZ!

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Optional

- With or without neutralisation
- Free-standing calorifier see Calorifiers


Delivery

Boiler, cladding and thermal insulation separately packed and delivered

On-site

- Mounting of cladding, thermal insulation and boiler controller
- · Mounting of boiler feet

Floor-standing gas condensing boiler (multi-part installation)

Hoval UltraGas® 2 (125-1550) (multi-part installation)

Floor-standing gas condensing boiler with built-in Hoval TopTronic® E control for multi-part installation. Assembled on-site by the installer.

UltraGas® 2 type	Nominal heat output 50/30 °C kW	Operating pressure bar
(125)	25-126	6
(150)	35-151	6
(190)	38-191	6
(230)	51-233	6
(300)	58-299	6
(350)	70-352	6
(400)	69-399	6
(450)	77-451	6
(500)	77-491	6
(620)	136-622	6
(700)	146-703	6
(800)	166-804	6
(1000)	205-999	6
(1100)	229-1112	6
(1300)	269-1320	6
(1550)	324-1550	6

¹ kW = modulation range

Part No.

7019 065 7018 776 7018 777

6053 398

Floor-standing gas condensing boiler (high-pressure design)

Delivery time approx. 8 weeks

Hoval UltraGas® 2 H (700-1550) (high-pressure design)

Floor-standing gas condensing boiler in high-pressure design

(operating pressure 10 bar)

UltraGas [®] 2 type	Nominal heat output 50/30 °C kW	Operating pressure bar
H (700)	146-703	10
H (1100)	229-1112	10
H (1550)	324-1550	10

¹ kW = modulation range

Propane version

System flow sensor for UltraGas® 2 for installation in the flow connector sleeve Rp 1/4", for regulating the flow temperature. Consisting of temperature sensor and connection cable

Installation of the system flow sensor is recommended for optimal control of the flow temperature.

233

on request

Hoval	UltraGas® 2	(125-230)
-------	-------------	-----------

Туре			(125)	(150)	(190)	(230)
Nominal heat output at 80/60 °C, natural gas ¹⁾		kW	21-114	33-139	35-177	47-218
·		kW	25-126	35-151	38-191	51-233
• Nominal heat output at 50/30 °C, natural gas 1)						
• Nominal heat output at 80/60 °C, propane 2)		kW	32-113	43-138	52-175	66-217
• Nominal heat output at 50/30 °C, propane ²⁾		kW	35-126	48-151	59-191	73-233
Nominal heat input with natural gas 3)		kW	23-116	32-142	35-179	47-223
Nominal heat input with propane ²⁾		kW	33-116	44-142	54-179	68-223
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
Operating temperature max. (T _{max})		°C	95	95	95	95
• Boiler water content (V _(H20))		ı	207	195	276	265
• Flow resistance boiler		•			agram	
Minimum circulation water quantity		l/h	_	-	- -	_
Boiler weight (without water capacity, incl. cladding)		kg	390	400	485	505
. ,						
 Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) ⁴⁾ Boiler efficiency at 30 % partial load (NCV/GCV) ⁴⁾ Room heating energy efficiency 		% %	98.6/88.9 108.7/98.1	97.6/88.1 108.7/98.1	98.5/88.7 109.0/98.2	98.2/88.5 108.4/97.8
- without control	ηs	%	93	93	93	93
- with control	ηs	%	95	95	95	95
	-	%	97	93 97	97	93 97
- with control and room sensor	ηs					
- annual energy consumption	Q_{HE}	GJ	209	265	326	412
• NOx class (EN 15502)			-	-	-	-
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	25	28	33	37
 Carbon monoxide emissions at 50/30 °C (related to 3 % of O₂) 	CO	mg/Nm ³	31	21	25	13
 O₂ content in flue gas min./max. output 		%	5.9/5.6	5.5/6.0	5.9/6.0	6.0/5.9
Heat loss in standby mode (EN 15502) (50°C)		Watt	260	260	320	320
• Dimensions				see dimensi	onal drawing	
Gas flow pressure min./max.						
·		mbar	17.4-80	17.4-80	17.4-80	17.4-80
		IIIDai	17.4-00	17.4-00	17.4-00	17.4-00
- Natural gas E/LL			27.57	27 57	27.57	27 57
- Propane		mbar	37-57	37-57	37-57	37-57
- Propane • Gas inlet pressure max. (idle pressure)			37-57 80	37-57 80	37-57 80	37-57 80
 Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: 		mbar mbar	80	80	80	80
 Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ 		mbar mbar m³/h	80 2.4-12.0	80 3.3-14.6	80 3.6-18.5	80 4.8-23.0
 - Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ 		mbar mbar m³/h m³/h	80 2.4-12.0 2.8-14.3	80 3.3-14.6 3.9-17.5	80 3.6-18.5 4.3-22.0	80 4.8-23.0 5.8-27.4
 Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ 		mbar mbar m³/h	80 2.4-12.0	80 3.3-14.6	80 3.6-18.5	80 4.8-23.0
 - Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ 		mbar mbar m³/h m³/h	80 2.4-12.0 2.8-14.3	80 3.3-14.6 3.9-17.5	80 3.6-18.5 4.3-22.0	80 4.8-23.0 5.8-27.4
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾		mbar mbar m³/h m³/h m³/h	80 2.4-12.0 2.8-14.3 1.4-4.8	80 3.3-14.6 3.9-17.5 1.8-5.8	80 3.6-18.5 4.3-22.0 2.2-7.3	80 4.8-23.0 5.8-27.4 2.8-9.1
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾		mbar mbar m³/h m³/h m³/h	80 2.4-12.0 2.8-14.3 1.4-4.8	80 3.3-14.6 3.9-17.5 1.8-5.8	80 3.6-18.5 4.3-22.0 2.2-7.3	80 4.8-23.0 5.8-27.4 2.8-9.1
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz)		mbar mbar m³/h m³/h m³/h	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230	3.3-14.6 3.9-17.5 1.8-5.8 1 x 230	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max.		mbar mbar m³/h m³/h m³/h V	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby		mbar mbar m³/h m³/h w³/h V Watt	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation		mbar mbar m³/h m³/h v Watt Watt IP	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level		mbar mbar m³/h m³/h V Watt Watt IP °C	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent)		mbar mbar m³/h m³/h v Watt Watt IP °C	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth		mbar mbar m³/h m³/h V Watt Watt IP °C	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air)		mbar mbar m³/h m³/h v Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise		mbar mbar m³/h m³/h V Watt Watt IP °C	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40
 Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) 		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³² • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise (reference value depending on installation conditions)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³²) • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise (reference value depending on installation conditions) • Condensate quantity (natural gas) at 50/30 °C • pH value of the condensate (approx.)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³² • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise (reference value depending on installation conditions)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise (reference value depending on installation conditions) • Condensate quantity (natural gas) at 50/30 °C • pH value of the condensate (approx.)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56
- Propane • Gas inlet pressure max. (idle pressure) • Gas connection values at 15 °C/1013 mbar: - Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ - Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾ • Operating voltage (50/60 Hz) • Electrical power consumption min./max. • Standby • Type of protection • Permitted ambient temperature during operation • Sound power level - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) - Sound pressure level heating noise (reference value depending on installation conditions) • Condensate quantity (natural gas) at 50/30 °C • pH value of the condensate (approx.) • Construction • Flue gas system		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas mass flow at min. nominal heat input (dry)		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 80/60 °C		mbar mbar m³/h m³/h V Watt Watt IP °C dB(A) dB(A)	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2 T120 188 37 64 43	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51 65 45	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55 68 46	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63 69 47
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C		mbar mbar mbar mbar mbar mbar mbar mar mbar mar mbar mar mar mar mar mar mar mar mar mar m	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2 T120 188 37 64 43 29	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51 65 45 28	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55 68 46 29	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63 69 47 29
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C		mbar mbar mbar mbar mbar mbar mbar mbar	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2 T120 188 37 64 43 29 48	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51 65 45 28 48	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55 68 46 29 48	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63 69 47 29 48
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E - (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) - (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ 2) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C		mbar mbar mbar mbar mbar mbar mbar mbar	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2 T120 188 37 64 43 29 48 154	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51 65 45 28 48 180	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55 68 46 29 48 232	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63 69 47 29 48 280
- Propane Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³ Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C PH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C		mbar mbar mbar mbar mbar mbar mbar mbar	80 2.4-12.0 2.8-14.3 1.4-4.8 1 x 230 41/140 7 20 5-40 64 69 54 11 4.2 T120 188 37 64 43 29 48	80 3.3-14.6 3.9-17.5 1.8-5.8 1 x 230 43/225 8 20 5-40 69 70 59 12 4.2 B23, B23F T120 226 51 65 45 28 48	80 3.6-18.5 4.3-22.0 2.2-7.3 1 x 230 38/151 8 20 5-40 63 66 53 15 4.2 7, C53, C63 T120 283 55 68 46 29 48	80 4.8-23.0 5.8-27.4 2.8-9.1 1 x 230 49/228 8 20 5-40 66 68 56 20 4.2 T120 344 63 69 47 29 48

¹⁾ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m ³ is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval	UltraGas [®] 2	2 (300-450)
-------	-------------------------	-------------

110401 01110005 2 (300-430)						
Туре			(300)	(350)	(400)	(450)
• Nominal heat output at 80/60 °C, natural gas ¹⁾		kW	54-274	67-315	62-362	73-415
Nominal heat output at 50/30 °C, natural gas 1) Nominal heat output at 50/30 °C, natural gas 1)		kW	58-299	70-352	69-399	77-451
Nominal heat output at 80/60 °C, propane ²⁾ Nominal heat output at 80/60 °C, propane ²⁾		kW	83-274	94-311	109-361	124-408
		kW	93-299	109-352	123-399	138-451
• Nominal heat output at 50/30 °C, propane ²⁾						
Nominal heat input with natural gas ³⁾		kW	54-282	64-331	62-374	71-427
Nominal heat input with propane ²⁾		kW	87-282	102-331	114-374	130-427
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
 Operating temperature max. (T_{max}) 		°C	95	95	95	95
Boiler water content (V _(H20))		1	472	452	432	412
Flow resistance boiler				see di	iagram	
Minimum circulation water quantity		l/h	-	-	-	-
Boiler weight (without water capacity, incl. cladding)		kg	730	765	800	830
• Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.2/88.5	98.2/88.5	98.2/88.5	98.2/88.5
• Boiler efficiency at 30 % partial load (NCV/GCV) 4)		%	109.2/98.4	108.9/98.1	109.0/98.2	108.9/98.1
Room heating energy efficiency						
- without control	ηs	%	94	93	93	-
- with control	ηs	%	96	95	95	-
- with control and room sensor	ηs	%	98	97	97	_
- annual energy consumption	Q_{HE}	GJ	505	590	653	-
• NOx class (EN 15502)			-	-	-	6
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	39	45	39	45
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	18	26	23	30
• O ₂ content in flue gas min./max. output	00	%	5.5/5.8	5.7/5.7	5.9/5.9	6.0/5.6
Heat loss in standby mode (EN 15502) (50°C)		Watt	430	430	430	430
, , ,		vvall	430			
• Dimensions				see dimensi	onal drawing	
Gas flow pressure min./max.						
- Natural gas E/LL		mbar	17.4-80	17.4-80	17.4-80	17.4-80
- Propane		mbar	37-57	37-57	37-57	37-57
Gas inlet pressure max. (idle pressure)		mbar	80	80	80	80
Gas connection values at 15 °C/1013 mbar:						
- Natural gas E – (Wo = 15.0 kWh/m ³) NCV = 9.7 kWh/m ³		m³/h	5.6-29.1	6.6-34.1	6.4-38.6	7.3-44.0
- Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³		m³/h	6.6-34.7	7.9-40.7	7.6-46.0	8.7-52.5
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m³/h	3.6-11.6	4.2-13.6	4.7-15.3	5.3-17.5
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230
Electrical power consumption min./max.		Watt	51/365	55/350	56/518	56/590
• Standby		Watt	5	5	5	5
Type of protection		IP	20	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40
Sound power level						
- Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	73	70	73	74
- Flue gas noise radiated from the mouth		dB(A)	71	72	73	74
(DIN 45635 part 47) (room air dependent/independent of room air)		` '				
- Sound pressure level heating noise		dB(A)	63	60	63	64
(reference value depending on installation conditions)		` '				
• Condensate quantity (natural gas) at 50/30 °C		l/h	22	25	28	29
• pH value of the condensate (approx.)		pН	4.2	4.2	4.2	4.2
Construction		μ			P, C53, C63	
				שבט, שבטר	, 555, 565	
• Flue gas system			T120	T120	T120	T120
- Temperature class		ka/h		522		
- Flue gas mass flow at max. nominal heat input (dry)		kg/h	445		591	674
- Flue gas mass flow at min. nominal heat input (dry)		kg/h °C	85 64	101	98	112
- Flue gas temperature at max. nominal heat output and 80/60 °C		°C	64	65 44	66	67 47
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C	43	44	48	47
- Flue gas temperature at min. nominal heat output and 50/30 °C		°C	29	29	29	29
- Max. permissible temperature of the combustion air		°C	48	48	48	48
- Combustion air flow rate		Nm³/h	364	428	483	552
- Maximum supply pressure for combustion air supply and flue gas line		Pa	130	130	130	130
- Maximum draught/underpressure at flue gas outlet		Pa	-30	-30	-30	-30

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H $_2$) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m ³ is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval UltraGas® 2 (500-800))
-----------------------------	---

Туре			(500)	(620)	(700)	(800)
• Nominal heat output at 80/60 °C, natural gas ¹⁾		kW	71-449	125-580	132-653	150-743
		kW	77-491	136-622	146-703	166-804
• Nominal heat output at 50/30 °C, natural gas 1)						
• Nominal heat output at 80/60 °C, propane 2)		kW	133-441	173-569	193-643	233-744
• Nominal heat output at 50/30 °C, propane 2)		kW	147-491	184-622	208-703	254-804
Nominal heat input with natural gas 3)		kW	71-463	124-591	134-668	151-759
Nominal heat input with propane 2)		kW	140-463	179-591	201-668	236-759
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
• Operating temperature max. (T _{max})		°C	95	95	95	95
• Boiler water content (V _(H20))		ı	408	536	509	831
• Flow resistance boiler		1	400		agram	001
Minimum circulation water quantity		l/h	_	see ui	agram	_
Boiler weight (without water capacity, incl. cladding)				1000	1125	
. ,		kg	855	1090	1135	1435
 Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) ⁴⁾ 		%	98.2/88.5	98.2/88.5	98.2/88.5	98.3/88.6
 Boiler efficiency at 30 % partial load (NCV/GCV) 4) 		%	109.0/98.2	109.0/98.2	108.9/98.1	109.1/98.3
Room heating energy efficiency						
- without control	ηs	%	-	-	-	-
- with control	ηs	%	-	-	-	-
- with control and room sensor	ηs	%	-	-	-	-
- annual energy consumption	Q _{HE}	GJ	_	_	_	_
• NOx class (EN 15502)	116		6	6	6	6
Not class (EN 15502) Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	50	33	40	36
• , , ,		-				
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	46	24	26	23
• O ₂ content in flue gas min./max. output		%	5.5/5.8	5.9/6.0	6.0/5.7	6.0/5.8
 Heat loss in standby mode (EN 15502) (50°C) 		Watt	430	540	540	600
• Dimensions				see dimensi	onal drawing	
Gas flow pressure min./max.					J	
- Natural gas E/LL		mbar	17.4-80	17.4-80	17.4-80	17.4-300
- Propane		mbar	37-57	37-57	37-57	37-57
·						
 Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: 		mbar	80	80	80	300
Gas connection values at 15 C/1013 mbar:						
		3	70 477	40.0.00.0	40.0.00.0	45 0 70 0
- Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³		m³/h	7.3-47.7	12.8-60.9	13.8-68.9	15.6-78.2
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m³/h	8.7-56.9	15.3-72.7	16.5-82.2	18.6-93.4
- Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ - Propane (G31) NCV = 24.4 kWh/m³ ²⁾		m³/h	8.7-56.9	15.3-72.7	16.5-82.2	18.6-93.4
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m³/h m³/h	8.7-56.9 5.7-19.0	15.3-72.7 7.3-24.2	16.5-82.2 8.2-27.4	18.6-93.4 9.7-31.1
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) 		m³/h m³/h	8.7-56.9 5.7-19.0	15.3-72.7 7.3-24.2	16.5-82.2 8.2-27.4	18.6-93.4 9.7-31.1
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. 		m ³ /h m ³ /h V Watt	8.7-56.9 5.7-19.0 1 x 230 57/716	15.3-72.7 7.3-24.2 1 x 230 63/831	16.5-82.2 8.2-27.4 1 x 230 67/1060	18.6-93.4 9.7-31.1 1 x 230 94/1012
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby 		m ³ /h m ³ /h V Watt Watt	8.7-56.9 5.7-19.0 1 x 230 57/716 5	15.3-72.7 7.3-24.2 1 x 230 63/831 5	16.5-82.2 8.2-27.4 1 x 230 67/1060 5	18.6-93.4 9.7-31.1 1 x 230 94/1012 7
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection 		m ³ /h m ³ /h V Watt Watt	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation 		m ³ /h m ³ /h V Watt Watt	8.7-56.9 5.7-19.0 1 x 230 57/716 5	15.3-72.7 7.3-24.2 1 x 230 63/831 5	16.5-82.2 8.2-27.4 1 x 230 67/1060 5	18.6-93.4 9.7-31.1 1 x 230 94/1012 7
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level 		m ³ /h m ³ /h V Watt Watt IP °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) 		m ³ /h m ³ /h V Watt Watt IP °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth 		m ³ /h m ³ /h V Watt Watt IP °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth 		m ³ /h m ³ /h V Watt Watt IP °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²⁾ Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class 		m ³ /h m ³ /h V Watt Watt IP °C dB(A) dB(A)	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas mass flow at min. nominal heat input (dry) 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2 T120 736 112 66	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196 68	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63 T120 1055 211 69	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238 66
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH kg/h kg/h °C °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2 T120 736 112 66 44	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196 68 47	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63 T120 1055 211 69 49	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238 66 44
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH kg/h kg/h °C °C °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2 T120 736 112 66 44 28 48	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196 68 47 28 48	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63 T120 1055 211 69 49 29 48	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238 66 44 28 48
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³² Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Max. permissible temperature of the combustion air Combustion air flow rate 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) l/h pH kg/h kg/h °C °C C Nm³/h	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2 T120 736 112 66 44 28 48 602	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196 68 47 28 48 764	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63 T120 1055 211 69 49 29 48 863	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238 66 44 28 48 981
 Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³ Propane (G31) NCV = 24.4 kWh/m³ ²) Operating voltage (50/60 Hz) Electrical power consumption min./max. Standby Type of protection Permitted ambient temperature during operation Sound power level Heating noise (EN 15036 part 1) (room air dependent) Flue gas noise radiated from the mouth (DIN 45635 part 47) (room air dependent/independent of room air) Sound pressure level heating noise (reference value depending on installation conditions) Condensate quantity (natural gas) at 50/30 °C pH value of the condensate (approx.) Construction Flue gas system Temperature class Flue gas mass flow at max. nominal heat input (dry) Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C Flue gas temperature at min. nominal heat output and 50/30 °C 		m³/h m³/h V Watt Watt IP °C dB(A) dB(A) I/h pH kg/h kg/h °C °C °C	8.7-56.9 5.7-19.0 1 x 230 57/716 5 20 5-40 78 77 68 37 4.2 T120 736 112 66 44 28 48	15.3-72.7 7.3-24.2 1 x 230 63/831 5 20 5-40 75 72 65 51 4.2 B23, B23P T120 933 196 68 47 28 48	16.5-82.2 8.2-27.4 1 x 230 67/1060 5 20 5-40 76 71 66 48 4.2 7, C53, C63 T120 1055 211 69 49 29 48	18.6-93.4 9.7-31.1 1 x 230 94/1012 7 20 5-40 78 - 68 57 4.2 T120 1198 238 66 44 28 48

¹⁾ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m ³ is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval	UltraGas ®	2	(1000-1550)	,
-------	-------------------	---	-------------	---

110 vai Oitia Gas 2 (1000-1330)						
Туре			(1000)	(1100)	(1300)	(1550)
• Nominal heat output at 80/60 °C, natural gas 1)		kW	185-926	203-1038	241-1230	297-1447
 Nominal heat output at 50/30 °C, natural gas ¹⁾ 		kW	205-999	229-1112	269-1320	324-1550
Nominal heat output at 80/60 °C, propane ²⁾		kW	262-926	299-1033	362-1227	427-1439
• Nominal heat output at 50/30 °C, propane ²⁾		kW	282-999	316-1112	385-1320	453-1550
Nominal heat input with natural gas 3)		kW	187-943	206-1057	247-1251	297-1469
Nominal heat input with propane ²⁾		kW	265-943	306-1057	371-1251	437-1469
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
Operating temperature max. (T _{max}) Pails a vertex a set of (1/2)		°C	95	95	95	95
Boiler water content (V _(H20)) Flow resistance boiler		I	756	718	1211	1118
Minimum circulation water quantity		l/h	_	see d	liagram -	_
Boiler weight (without water capacity, incl. cladding)		kg	1580	1635	2280	2445
• Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) ⁴⁾		%	98.2/88.5	98.2/88.5	98.2/88.5	98.2/88.5
Boiler efficiency at 30 % partial load (NCV/GCV) Boiler efficiency at 30 % partial load (NCV/GCV) The first state of the first stat		%	109.0/98.2	108.6/97.8	108.7/97.9	108.5/97.7
Room heating energy efficiency						
- without control	ηs	%	-	-	-	-
- with control	ηs	%	-	-	-	-
- with control and room sensor	ηѕ	%	-	-	-	-
- annual energy consumption	Q_{HE}	GJ	-	-	-	=
• NOx class (EN 15502)			6	6	6	6
Nitrogen oxide emissions (EN 15502) (GCV)		mg/kWh	36	41	37	35
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	25	26	23	23
• O ₂ content in flue gas min./max. output		%	6.0/5.9	6.0/5.9	6.0/5.9	6.0/6.0
Heat loss in standby mode (EN 15502) (50°C)		Watt	600	600	740	740
• Dimensions				see dimens	ional drawing	
Gas flow pressure min./max. Natural max F/I I			47.4.000	47.4.000	47.4.000	47.4.000
- Natural gas E/LL		mbar	17.4-300 37-57	17.4-300 37-57	17.4-300	17.4-300 37-57
- Propane • Gas inlet pressure max. (idle pressure)		mbar mbar	300	300	37-57 300	300
• Gas connection values at 15 °C/1013 mbar:		IIIDai	000	000	000	000
- Natural gas E – (Wo = 15.0 kWh/m ³) NCV = 9.7 kWh/m ³		m ³ /h	19.3-97.2	21.2-109.0	25.5-129.0	30.6-151.4
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m ³ /h	23.0-116.0	25.3-130.0	30.4-153.9	36.5-180.7
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m ³ /h	10.9-38.6	12.5-43.3	15.2-51.3	17.9-60.2
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230
			3 x 400	3 x 400	3 x 400	3 x 400
Electrical power consumption min./max.		Watt	203-1873	203-1933	271/4111	301/4141
• Standby		Watt	7	7	5	7
Type of protection Permitted ambient temperature during eneration		IP °C	20 5-40	20 5-40	20 5-40	20 5-40
Permitted ambient temperature during operation Sound power level		C	3-40	3-40	5-40	5-40
Sound power level Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	83	82	86	85
- Flue gas noise radiated from the mouth		dB(A)	-	-	-	-
(DIN 45635 part 47) (room air dependent/independent of room air)		(-',				
- Sound pressure level heating noise		dB(A)	73	72	74	76
(reference value depending on installation conditions)						
 Condensate quantity (natural gas) at 50/30 °C 		l/h	68	72	100	138
pH value of the condensate (approx.)		рН	4.2	4.2	4.2	4.2
Construction				B23, B23	P, C53, C63	
• Flue gas system			T .00	T .00	T .00	- 400
- Temperature class		ka/b	T120	T120	T120	T120
 Flue gas mass flow at max. nominal heat input (dry) Flue gas mass flow at min. nominal heat input (dry) 		kg/h	1488 295	1669 325	1975 390	2230 450
- Flue gas mass now at min. nominal heat input (dry) - Flue gas temperature at max. nominal heat output and 80/60 °C		kg/h °C	295 69	70	66	450 68
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C	47	49	45	46
- Flue gas temperature at min. nominal heat output and 50/30 °C		°C	28	29	29	28
- Max. permissible temperature of the combustion air		°C	48	48	48	48
- Combustion air flow rate		Nm ³ /h	1219	1366	1617	1830
- Maximum supply pressure for combustion air supply and flue gas line		Pa	130	130	130	130
- Maximum draught/underpressure at flue gas outlet		Pa	-30	-30	-30	-30

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H $_2$) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

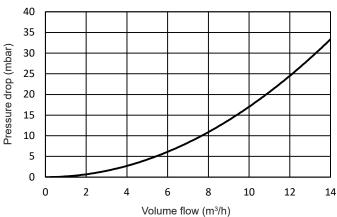
⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval UltraGas®	2 H	(700-1550)
-----------------	-----	------------

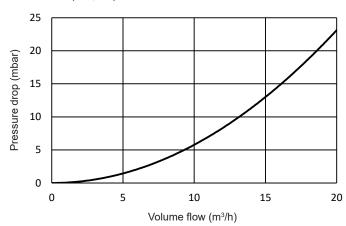
110 vai 011 a das 211 (700-1330)					
Туре			H (700)	H (1100)	H (1550)
• Nominal heat output at 80/60 °C, natural gas 1)		kW	132-653	203-1038	297-1447
• Nominal heat output at 50/30 °C, natural gas ¹⁾		kW	146-703	229-1112	324-1550
• Nominal heat output at 80/60 °C, propane ²⁾		kW	193-643	299-1033	427-1439
		kW	208-703	316-1112	453-1550
• Nominal heat output at 50/30 °C, propane ²⁾					
Nominal heat input with natural gas ³⁾		kW	134-668	206-1057	297-1469
Nominal heat input with propane ²⁾		kW	201-668	306-1057	437-1469
Operating pressure heating min./max. (PMS)		bar	1/10	1/10	1/10
Operating temperature max. (T _{max})		°C	95	95	95
Boiler water content (V _(H20))		1	509	709	1118
Flow resistance boiler				see diagram	
Minimum circulation water quantity		l/h	-	-	-
Boiler weight (without water capacity, incl. cladding)		kg	1170	1735	2550
• Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.2/88.5	98.2/88.5	98.2/88.5
Boiler efficiency at 30 % partial load (NCV/GCV) 4)		%	108.9/98.1	108.6/97.8	108.5/97.7
• Room heating energy efficiency		,,		100.0707.10	
- without control	ηs	%	_	-	_
- with control	ηs	%	_	_	_
- with control and room sensor	ηs	%	-	-	_
- annual energy consumption	Q _{HE}	GJ	_	_	_
	≪HE	00	6	6	6
• NOx class (EN 15502)	NO		6	6	
Nitrogen oxide emissions (EN 15502) (GCV) Carbon managinal emissions at 50/20 °C (related to 2.0/ of C.)		mg/kWh	40	41	35
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	26	26	23
• O ₂ content in flue gas min./max. output		%	6.0/5.7	6.0/5.9	6.0/6.0
 Heat loss in standby mode (EN 15502) (50°C) 		Watt	540	600	740
• Dimensions			see	e dimensional draw	ving
Gas flow pressure min./max.					
- Natural gas E/LL		mbar	17.4-80	17.4-300	17.4-300
- Propane		mbar	37-57	37-57	37-57
Gas inlet pressure max. (idle pressure)		mbar	80	300	300
• Gas connection values at 15 °C/1013 mbar:					
- Natural gas E – (Wo = 15.0 kWh/m ³) NCV = 9.7 kWh/m ³		m ³ /h	13.8-68.9	21.2-109.0	30.6-151.4
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m ³ /h	16.5-82.2	25.3-130.0	36.5-180.7
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m ³ /h	8.2-27.4	12.5-43.3	17.9-60.2
. , ,					
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230
		101-44	07/4000	3 x 400	3 x 400
Electrical power consumption min./max.		Watt	67/1060	203/1933	301/4141
• Standby		Watt	5	7	7
Type of protection		IP	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40
Sound power level					
- Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	76	82	85
- Flue gas noise radiated from the mouth		dB(A)	71	-	-
(DIN 45635 part 47) (room air dependent/independent of room air)					
- Sound pressure level heating noise		dB(A)	66	72	76
(reference value depending on installation conditions)					
Condensate quantity (natural gas) at 50/30 °C		l/h	48	72	138
• pH value of the condensate (approx.)		pН	4.2	4.2	4.2
Construction				23, B23P, C53, C6	33
• Flue gas system				, 11, 300, 00	
- Temperature class			T120	T120	T120
- Flue gas mass flow at max. nominal heat input (dry)		kg/h	1055	1669	2230
- Flue gas mass flow at max. Horninal heat input (dry) - Flue gas mass flow at min. nominal heat input (dry)		kg/h	211	325	450
, , ,		°C		70	
- Flue gas temperature at max. nominal heat output and 80/60 °C		°C	69 49	70 49	68 46
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C			
- Flue gas temperature at min. nominal heat output and 50/30 °C			29	29	28
- Max. permissible temperature of the combustion air		°C	48	48	48
- Combustion air flow rate		Nm³/h	863	1366	1830
- Maximum supply pressure for combustion air supply and flue gas line		Pa Da	130	130	130
- Maximum draught/underpressure at flue gas outlet		Pa	-30	-30	-30

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H $_2$) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

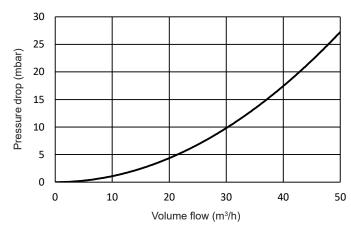
²⁾ Data related to NCV, conditional data

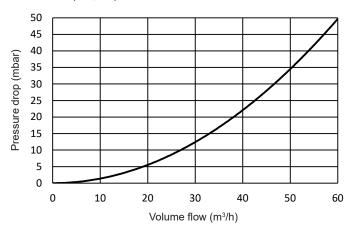

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

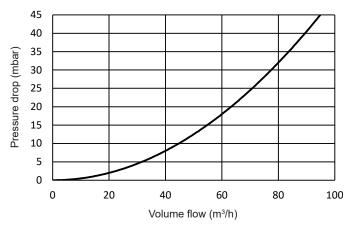
⁴⁾ Conversion acc. to EN 15502-1, Appendix J

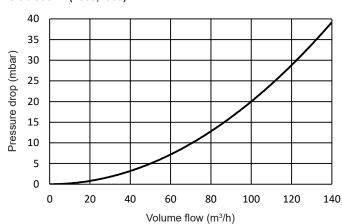

Hoval

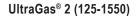
Flow resistance on the heating water side




UltraGas® 2 (190,230)


UltraGas® 2 (300-500)


UltraGas® 2 (620,700)



UltraGas® 2 (800-1100)

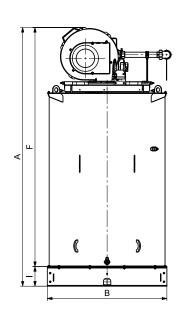
UltraGas® 2 (1300,1550)

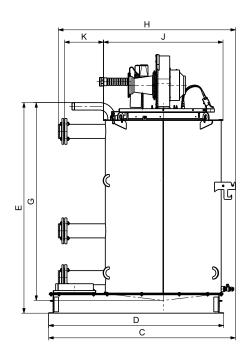
Notice

Minimal space see separate page

- Draining (behind the front casing)
- including siphon for plastic tube
- Boiler feet (adjustable 30-80 mm)
- Safety fitting pipe flow (option) 13
- Safety fitting pipe return (option)
- Diaphragm pressure expansion tank connection Rp 1" 15
- Pressure limiter Rp 3/4"
- Safety temperature control Rp 1/2" 17
- Cleaning opening left or right
- Flow connection sleeve Rp 1/4" for installation of the system flow sensor

Туре	Α	В	С	D	D1	D2	D3	Е	F	G	Н	J	K	L	М	N	0	Q	Q1	R
(125,150)	1923	720	1182	799	754	242	-	533	1681	1479	714	122	334	134	207	207	65	192	-	1725
(190,230)	1968	820	1256	895	854	242	-	633	1726	1517	717	145	337	134	204	204	69	226	-	1778
(300-500)	1923	930	1632	1165	1204	242	-	743	1683	1447	745	169	365	131	285	285	189	-	190	1735
(620,700)	2234	1110	1722	1184	1294	242	-	923	1982	1564	757	203	377	128	286	286	225	0	0	1966
(800-1100)	2255	1290	1822	1364	1480	242	-	1103	1987	1573	788	215	408	128	378	378	225	58	-	1959
(1300, 1550)	2395	1560	2200	1640	1790	250	895	1363	2103	1600	822	238	442	138	420	420	218	22	-	2064
H (700)	2234	1110	1722	1184	1294	242	-	923	1982	1564	757	203	377	128	286	286	225	0	0	1966
H (1100)	2255	1290	1822	1364	1480	242	-	1103	1987	1573	788	215	408	128	378	378	225	58	-	1959
H (1550)	2395	1560	2200	1640	1790	250	895	1363	2103	1600	822	238	442	138	390	390	218	22	-	2064
Туре	S	Т	U	V	W	X	X1	Υ	Z		1,2	,5 *		3	4	8	8	10	1	11
Type (125,150)	S 318	T 40	U 1725	V 101	W 124	X 319	X1 99	Y 157	Z 139	DN 6		,5 * I 6 / 4-I	hole	3 Rp 1"	4 R 1"			10 DN 40		22/125
											65 / PN				R 1"	Ø 15	55/159		Ø 12	
(125,150)	318	40	1725	101	124	319	99	157	139	DN 6	65 / PN 65 / PN	16/4-1	hole	Rp 1"	R 1"	Ø 15	55/159 55/159	DN 40	Ø 12 Ø 19	22/125
(125,150) (190,230)	318 371	40 50	1725 1778	101 101	124 124	319 319	99 99	157 195	139 139	DN 6 DN 1	65 / PN 65 / PN 00 / PI	l 6 / 4-l l 6 / 4-l	hole hole	Rp 1" Rp 1½"	R 1" R 1¼"	Ø 15 Ø 15 Ø 25	55/159 55/159 52/256	DN 40 DN 40	Ø 12 Ø 19 Ø 19	22/125 97/200
(125,150) (190,230) (300-500)	318 371 389	40 50 40	1725 1778 1736	101 101 101	124 124 121	319 319 316	99 99 96	157 195 217	139 139 184	DN 6 DN 1 DN 1	65 / PN 65 / PN 00 / PI 00 / PI	I 6 / 4-I I 6 / 4-I N 6 / 4-	hole hole hole	Rp 1" Rp 1½" Rp 1½"	R 1" R 11/4" R 11/2"	Ø 15 Ø 15 Ø 25 Ø 30	55/159 55/159 52/256 02/306	DN 40 DN 40 DN 40	Ø 12 Ø 19 Ø 19 Ø 24	22/125 97/200 97/200
(125,150) (190,230) (300-500) (620,700)	318 371 389 483	40 50 40 75	1725 1778 1736 1938	101 101 101 176	124 124 121 118	319 319 316 328	99 99 96 89	157 195 217 267	139 139 184 211	DN 6 DN 1 DN 1 DN 1	55 / PN 65 / PN 00 / PI 00 / PI 25 / PI	I 6 / 4-I I 6 / 4-I N 6 / 4- N 6 / 4-	hole hole hole hole	Rp 1" Rp 1½" Rp 1½" Rp 2"	R 1" R 11/4" R 11/2" R 2"	Ø 15 Ø 15 Ø 25 Ø 30 Ø 30	55/159 55/159 52/256 02/306 02/306	DN 40 DN 40 DN 40 DN 40	Ø 12 Ø 19 Ø 19 Ø 24 Ø 24	22/125 97/200 97/200 17/250
(125,150) (190,230) (300-500) (620,700) (800-1100)	318 371 389 483 572	40 50 40 75 100	1725 1778 1736 1938 1959	101 101 101 176 176	124 124 121 118 118	319 319 316 328 374	99 99 96 89	157 195 217 267 357	139 139 184 211 219	DN 6 DN 1 DN 1 DN 1 DN 1	65 / PN 65 / PN 00 / PI 00 / PI 25 / PI 50 / PI	I 6 / 4-I I 6 / 4-I N 6 / 4- N 6 / 4- N 6 / 8-	hole hole hole hole hole	Rp 1" Rp 1½" Rp 1½" Rp 2" Rp 2"	R 1" R 11/4" R 11/2" R 2" R 2"	Ø 15 Ø 15 Ø 25 Ø 30 Ø 30 Ø 40	55/159 55/159 52/256 02/306 02/306 02/406	DN 40 DN 40 DN 40 DN 40 DN 40	Ø 12 Ø 19 Ø 19 Ø 24 Ø 24	22/125 97/200 97/200 17/250 17/250
(125,150) (190,230) (300-500) (620,700) (800-1100) (1300,1550)	318 371 389 483 572 621	40 50 40 75 100 100	1725 1778 1736 1938 1959 2064	101 101 101 176 176 190	124 124 121 118 118 128	319 319 316 328 374 398	99 99 96 89 89	157 195 217 267 357 455	139 139 184 211 219 244	DN 6 DN 1 DN 1 DN 1 DN 1	55 / PN 55 / PN 00 / PI 00 / PI 25 / PI 50 / PI	I 6 / 4-I I 6 / 4-I N 6 / 4- N 6 / 4- N 6 / 8- N 6 / 8-	hole -hole -hole -hole -hole	Rp 1" Rp 1½" Rp 1½" Rp 2" Rp 2" Rp 2"	R 1" R 11/4" R 11/2" R 2" R 2" R 2"	Ø 15 Ø 15 Ø 25 Ø 30 Ø 30 Ø 40 Ø 30	55/159 55/159 52/256 02/306 02/306 02/406 02/306	DN 40 DN 40 DN 40 DN 40 DN 40 DN 40	Ø 12 Ø 19 Ø 19 Ø 24 Ø 24 Ø 24	22/125 97/200 97/200 17/250 17/250 17/250

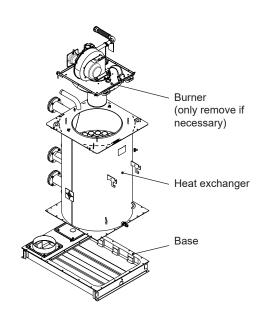

^{*} DN = nominal diameter, PN = nominal pressure


Hoval

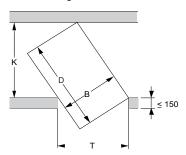
Installation dimensions

Boiler without cladding and thermal insulation (Dimensions in mm)

UltraGas® 2 (125-1550)



UltraGas® 2		Dimensions for multi-part installation									
type	Α	В	С	D	Ε	F	G	Н	1	J	K
(125,150)	1765	580	957	880	1519	1625	1421	946	140	580	242
(190,230)	1818	680	1054	980	1583	1678	1484	1037	140	680	236
(300-500)	1777	790	1400	1330	1544	1637	1451	1391	140	950	316
(620,700)	2099	970	1516	1420	1708	1940	1605	1437	159	970	316
(800-1100)	2120	1150	1712	1606	1729	1945	1625	1722	175	1150	408
(1300,1550)	2255	1410	2032	1916	1779	2056	1671	2042	199	1410	458


Weights for multi-part installation UltraGas® 2

UltraGas® 2 type	Base kg	Heat exchanger kg	Burner kg
(125)	34	207	29
(150)	34	220	29
(190)	42	272	39
(230)	42	293	39
(300)	60	455	60
(350)	60	486	60
(400)	60	520	60
(450)	60	554	60
(500)	60	576	60
(620)	86	729	80
(700)	86	777	80
(800)	104	1017	93
(1000)	104	1154	100
(1100)	104	1208	100
(1300)	155	1683	160
(1550)	155	1847	160

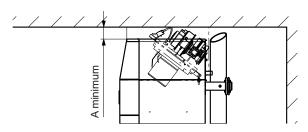
Required minimum width of door and corridor for boiler installation

The following values are the calculated minimum values (dimensions in mm)

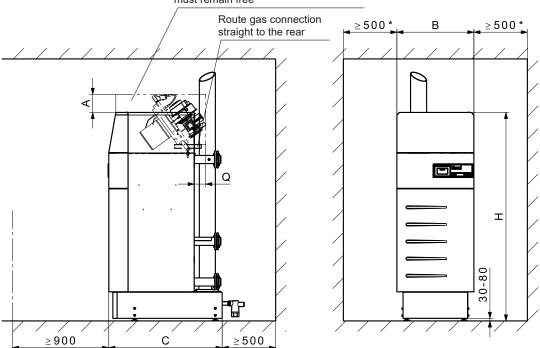
V -	В	v D
N -	Т	-x D

$$T = \frac{B}{K} \times D$$

B = boiler width
D = max. boiler length
T = door width
K = corridor width

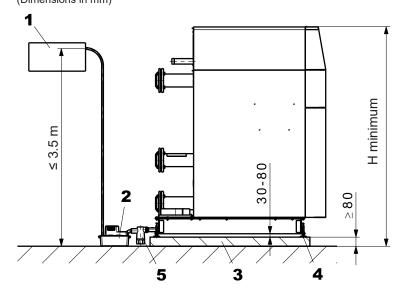

Calculation example for the necessary corridor width Door width T = 800

UltraGas® 2 (500) $K = \frac{790}{800} \times 1330 = corridor width ≥ 1314$

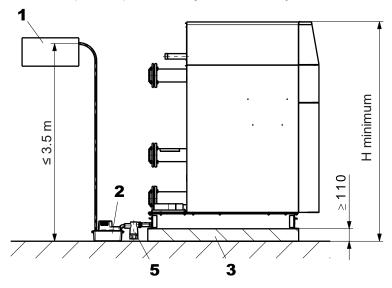

Space requirements

(Dimensions in mm)

UltraGas® 2 (125-1550)


For swinging out the burner this area must remain free

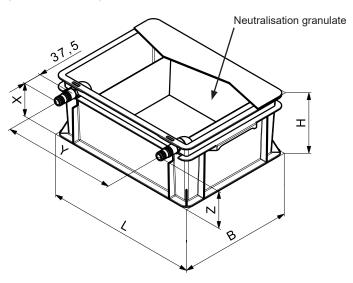
UltraGas® 2 type	A 1)	A minimum ²⁾	В	С	H ³⁾	H minimum 4)	Q
(125,150)	169	106	720	1060	1953	1934	125
(190,230)	155	71	820	1160	1998	1979	2
(300-500)	513	156	930	1510	1953	1937	60
(620,700)	121	121	1110	1600	2264	2255	155
(800-1100)	280	195	1290	1786	2285	2276	119
(1300,1550)	291	154	1560	2104	2425	2416	163
H (700)	121	121	1110	1600	2264	2255	155
H (1100)	280	195	1290	1786	2285	2276	119
H (1550)	291	154	1560	2104	2425	2416	163


- 1) If room height is too small: Reduction of dimension possible (see A minimum).
- Attention! With A minimum the burner can not be swung out completely anymore! Cleaning with UltraGas® 2 (125-230) and UltraGas® 2 (620-1550) still possible
- 3) Height value assumes adjustable feet are set to 30 mm
- The base plates cannot be installed without feet and the installer will have to fit a siphon with min. 70 mm barrier height. For details see next page.
- The heat generator can be placed with one side directly on the wall. However, to protect heat-sensitive walls against damage, a distance of at least 150 mm from the wall must be provided.
- The cleaning opening must be easily accessible. As a result, a minimum distance of 500 mm must be maintained on the cleaning opening side.

UltraGas® 2 (125-1550) with masonry base and adjustable feet (Dimensions in mm)

UltraGas® 2 type H minimum 1) (125, 150)1934 (190,230)1979 (300-500)1937 2255 (620,700)2276 (800-1100)(1300, 1550)2416 H (700) 2255 H (1100) 2276 H (1550) 2416

UltraGas® 2 (125-1550) with masonry base without adjustable feet

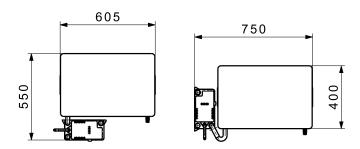

UltraGas® 2 type	H minimum 1)
(125,150)	1934
(190,230)	1979
(300-500)	1937
(620,700)	2255
(800-1100)	2276
(1300,1550)	2416
H (700)	2255
H (1100)	2276
H (1550)	2416

- 1 Neutralisation unit (option)
- 2 Condensate pump (option)
- 3 Masonry base
- 4 Feet adjustable up to 30-80 mm
- 5 Siphon 2)
- 1) Height value assumes adjustable feet are set to 30 mm
- ²⁾ Caution! The installer will have to fit a siphon with min. 70 mm barrier height.

Notice

- The steps of the climbing aid provided must be horizontal. Adapt the climbing aid if necessary.
- Base plates and feeds will not be refunded!
- With H minimum, cleaning the siphon is more difficult.

Neutralisation unit HNB-0400 to HNB-1600 (Dimensions in mm)



	HNB-0400,-0800	HNB-1200,-1600			
Dimensions (L x W x H)	405 x 300 x 180 mm	605 x 400 x 180 mm			
Inlet height (Z)	128 mm				
Drain height (X)	118 mm				
Distance between the connections (Y)	approx. 350 mm	approx. 550 mm			

Neutralisation unit HNB-0400,-0800 and condensate pump (Dimensions in mm)

Neutralisation unit HNB-1200,-1600 and condensate pump (Dimensions in mm)

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, etc.) as well as the corresponding regional regulations.

The following standards and guidelines must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DVGW directives
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the filling and replacement water, the following conditions must be complied with:

The quality of the heating water must be checked and documented periodically:

- For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.
- For an installed heat output above 1000 kW, an check of the heating water is required twice a year.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Plants with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- In the case of bivalent heating systems, the values of the heat generator with the strictest requirement for water quality must be complied with.
- If only the boiler is replaced in an existing plant, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

see separate engineering sheet "Use of frost protection agent".

Heating room

- Boilers cannot be positioned in rooms in which halogen compounds can occur and into which combustion air can enter (e.g. laundrettes, hairdressers).
- Halogen compounds can be caused by cleaning and degreasing solutions, dissolvents, glue and bleaching lyes. Pay attention to the Procal leaflet, corrosion through Halogen compounds.

Combustion air supply

The supply of combustion air must be guaranteed. There must be no possibility to close the air supply opening. For direct combustion air to boiler (LAS system) mount the connection for direct combustion air inlet. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

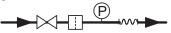
The minimum free cross-section for the combustion air can be assumed simplified as follows:

- Room air-independent operation with separate combustion air pipe to the boiler:
 0.8 cm² per 1 kW of output. The pressure drop in the combustion air pipe must be considered for the calculation of the flue gas system.
- In the UltraGas[®] 2, ventilation of the installation or boiler room must be guaranteed for operation independent from the room air.
- Room air-dependent operation:
 Minimum free cross-section of the opening into the open: 150 cm² or twice 75 cm² and additionally 2 cm² necessary for each kW of output over 50 kW for vent into the open.

Gas connection Commissioning

- Initial commissioning must be performed by a specialist technician from Hoval or a gas specialist technician.
- Burner setting values according to the installation instructions.

Manual gas shut-off valve and gas filter


Immediately in front of the boiler a manual gas shut-off device (valve) must be installed according to relevant regulations.

In the UltraGas® 2 (400-1550) type, an external gas filter must be installed in the gas supply line.

Make sure that the gas line from the external gas filter to the gas connection of the boiler is cleaned.

For the UltraGas® (125-350) types, it is necessary to comply with the local regulations concerning the need for a gas filter.

Construction of a recommended gas connection

Legend:

manual gas shut-off valve

↓////• gas hose/compensator

gas filter

pressure gauge with test burner and push-button valve

Type of gas

 The boiler is only to be operated with the type of gas stated on the rating plate.

Gas pressure natural gas

Necessary gas flow pressure at the boiler inlet: UltraGas® 2 (125-700) min. 17.4 mbar, max. 80 mbar UltraGas® 2 (800-1550) min. 17.4 mbar, max. 300 mbar

Gas pressure propane

- A gas pressure controller to reduce the boiler inlet pressure must be installed on-site for propane.
- Necessary gas flow pressure at the boiler inlet: UltraGas® 2 (125-1550) min. 37 mbar, max. 50 mbar

Gas pressure regulator

- The installation of a gas pressure regulator is only necessary if the gas flow pressure in the gas network exceeds the maximum permissible gas flow pressure of the UltraGas® 2 or if there are considerable fluctuations in the gas flow pressure.
- Pressure fluctuations in the gas network must be prevented by suitable measures (e.g. gas storage tanks or pressure regulators). The local conditions must be checked in each individual case

Closed heating system

The boiler is only approved for use in closed heating systems.

Minimum circulation water quantity

No minimum water circulation volume is required.

Calorifier connection

If a calorifier is connected, all heating groups must be provided with a mixer.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Space requirements

See "Dimensions" for information

Pump follow-on

For operating temperatures of the boiler above 85 °C, after each burner switch-off, the circulating pump must be in operation for at least 2 minutes (the pump after-run is included in the boiler controller with TopTronic® E control).

Heating boiler in the attic

If the gas boiler is positioned on the top floor, the installation of a low water protection, which automatically turns the gas burner off in case of water shortage, is recommended.

Condensate drain

- A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority or sewer operator.
- The condensate from the flue gas line can be discharged via the boiler. A condensate trap is no longer needed in the flue gas system.
- The condensate must be conducted openly (funnel) into the sewage system.
- Suitable materials for condensate drain:
- stoneware pipes
- pipes made from glass
- pipes made from stainless steel
- pipes made from plastic: PVC, PE, PP, ABS and UP
- A siphon must be installed at the condensate outlet on the gas boiler (included in the boiler scope of delivery).

Diaphragm pressure expansion tank

- An adequately dimensioned diaphragm pressure expansion tank must be provided.
- The diaphragm pressure expansion tank has to be installed in principle at the heating return, or at the safety flow.
- Starting from 70 °C an intermediate tank is necessary.

Safety valve

At the safety flow a safety valve and an automatic exhauster must be installed.

Noise damping

The following measures are possible for sound insulation:

- Make boiler room walls, ceiling and floor as solid as possible.
- If there are living areas above or below the boiler room, connect pipes flexibly using expansion joints.
- Connect circulating pumps to the piping network using expansion joints

Noise level

- The acoustic power level value is dependent on the local and spacial circumstances.
- The acoustic pressure level is dependent on the installation conditions and can for instance be 5 to 10 dB(A) lower than the acoustic power level at a distance of 1 m.

Recommendation:

If the combustion air intake opening is located on the house facade near a noise-sensitive place (window of bedroom, garden terrace, etc.), we recommend using a silencer in the combustion air duct.

Allocation of gas filters for UltraGas® 2

UltraGas® 2 type	Gas throughput m³/h	Gas filter type	Dimension	Pressure drop gas filter (with clean filter) mbar
(125)	11.9	70602/6B	Rp 1"	0.2
(150)	14.2	70602/6B	Rp 1"	0.3
(190)	18.0	70603/6B	Rp 1½"	0.2
(230)	22.4	70603/6B	Rp 1½"	0.2
(300)	29.2	70603/6B	Rp 1½"	0.3
(350)	33.9	70603/6B	Rp 1½"	0.4
(400)	38.6	70603/6B	Rp 1½"	0.6
(450)	44.0	70603/6B	Rp 1½"	0.7
(500)	46.4	70631/6B	Rp 2"	0.5
(620)	59.3	70631/6B	Rp 2"	0.7
(700)	67.0	70631/6B	Rp 2"	8.0
(800)	76.1	70631/6B	Rp 2"	0.9
(1000)	94.6	70631/6B	Rp 2"	1.4
(1100)	106.0	70631/6B	Rp 2"	1.6
(1300)	125.5	70610F/6B	DN 65	1.5
(1550)	147.3	70610F/6B	DN 65	2.1

Flue gas system

- Gas boilers must be connected to a flue gas system (chimney or flue gas lines).
- Flue gas lines must be gas tight and leak tight against condensate and over pressure.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas system must be connected with an angle, so that the resulting condensate of the flue gas system can flow back to the boiler and can be neutralised there before discharging into the canalisation.
- Gas boilers with condensation heat utilisation are to be connected to a flue gas line min. Temperature class T120.
- A flue gas temperature limiter is built in in the boiler.

Standard values for flue gas line dimensions

Standard values for the flue gas line dimensions can be found in the following table.

Table with bases for calculation

- Calculation based on max. 1000 m above sea level.
- Installation room with supply air opening (room air dependent operation)
- An individual calculation must be carried out for room air-independent operation (accessories as option) or a combustion air supply via a duct.
- Connecting line was calculated with max. 5 m.

 The first 2 m of the flue gas line must be configured with the same dimension as the flue gas connector, after which the size of the flue gas system can be selected according to the table below.

Table "Standard values for flue gas line dimensions"

Boiler		Flue gas line (smooth walled)	Number of	elbows 90° (fl	ue gas + com	bustion air)
UltraGas® 2	Internal Ø flue gas outlet	Designation	Total pipe	length in m (fl	ue gas + comb	oustion air)
type	mm	DN	1	2	3	4
(125)	155	130	24	23	22	21
(150)	155		18	17	16	15
(125)	155	150	47	47	46	45
(150)	155		45	45	45	44
(190)	155		43	42	40	38
(230)	155		20	20	19	18
(230)	155	175	44	43	43	42
(230)	155	200	45	44	43	43
(300)	252		45	44	43	43
(350)	252		44	43	43	42
(400)	252	250	44	43	42	41
(450)	252		50	50	50	50
(500)	252		50	50	50	50
(620)	302		43	42	41	40
(700)	302		42	41	40	39
(800)	302	300	45	44	43	43
(1000)	302		44	43	43	42
(1100)	302	350	47	46	45	44
(1300)	402		46	45	44	43
(1550)	402		45	44	43	43
H (700)	302	250	42	41	40	39
H (1100)	302	350	47	46	45	44
H (1550)	402		45	44	43	43

Notice: The values in the table "Standard values for flue gas line dimensions" are standard values for reference. An exact calculation for the flue gas duct must be made on-site.

For chimney systems above 25 m effective height, negative pressure in the chimney is to be expected in some operating conditions. Therefore, we recommend an individual design of the chimney system and checking the individual pressure conditions.

Looking for the appropriate hydraulic schematic? Please contact your local Hoval partner.

Hoval UltraGas® 2 D (250-3100)

Gas boiler

- Double boiler made of steel with condensing technology consisting of 2 individual boilers of 125, 150, 190, 230, 300, 350, 400, 450, 500, 620, 700, 800, 1000, 1100, 1300 or 1550 kW
- For the combustion of:
- natural gas E
- natural gas E with a hydrogen content (H₂) of up to 20 % by vol.
- propane according to DIN 51622
- biomethane according to EN 16723
- Combustion chamber made of stainless steel
- Maximum flue gas condensation by secondary heating surfaces made of TurboFer® hybrid stainless steel composite pipes; heating gas side: stainless steel/aluminium water side: stainless steel
- · Thermal insulation with mineral wool mat
- · Water pressure sensor:
 - Fulfils the function of a minimum and maximum pressure limiter
 - Replacement for the low water level protection
- Flue gas temperature sensor with flue gas limiter function
- Pre-mix burner
 - with fan and venturi
- modulating operation
- automatic ignition
- ionisation guard
- gas pressure monitor
- Gas boiler fully clad with steel plates, red powder-coated
- Flue gas overpressure set consisting of motorised air intake suction flap (connection for direct combustion air supply without accessories possible) and flue gas collector.
- Heating connections backwards incl. counter flange, screws and seals for:
 - heating flow
 - high temperature return
 - low temperature return
- UltraGas® 2 D (600-3100): with integrated gas pipe compensator
- Each individual boiler has a Hoval TopTronic® E control built in
- Possibility of connecting an external gas solenoid valve with error output

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- · Service and maintenance function
- · Fault message management
- Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

Model range

UltraGas® 2 type	Nominal heat output at 50/30 °C kW
D (250)	25-252
D (300)	35-302
D (380)	38-382
D (460)	51-466
D (600)	58-598
D (700)	70-704
D (800)	69-798
D (900)	77-902
D (1000)	77-982
D (1240)	136-1244
D (1400)	146-1406
D (1600)	166-1608
D (2000)	205-1998
D (2200)	229-2224
D (2600)	269-2640
D (3100)	324-3100
DH (1400)	146-1406
DH (2200)	229-2224
DH (3100)	324-3100

TopTronic[®] E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating circuit with mixer
 - 1 heating circuit without mixer
 - 1 hot water charging circuit
- bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 1 module expansion:
- 1 module expansion:- module expansion heating circuit or
- module expansion heat balancing or
- module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator (per single boiler):

UltraGas® 2 (125-230)

- 1 module expansion and 1 controller module or
- 2 controller modules

UltraGas® 2 (300-500):

- 3 controller modules/module expansions

UltraGas® 2 (620-1550):

- 4 controller modules/module expansions

Notice

Max. 1 module expansion can be connected to the basic module heat generator TTE-WEZ!

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Optional

- Free-standing calorifier see "Calorifiers"
- · Additional control for more heating circuits
- · Hydraulic connection

Delivery

2 gas boilers, cladding with thermal insulation, 2 TopTronic® E controls, flue gas collector and combustion air connection delivered separately packed

On site

- Mounting of cladding, thermal insulations and boiler controller
- · Mounting of boiler feet
- Mounting of the flue gas connection line and flue gas overpressure set (two motorised combustion air dampers and a flue gas collector)
- Bus cable for connecting the two boiler controllers of the double boiler on site (not included in scope of delivery)

Notice

For the version with common flue gas line with overpressure, the flue gas excess pressure set must be imperatively mounted.

Hoval UltraGas [®] 2 D (250-460)						
Туре			D (250)	D (300)	33-278 35-354 35-302 38-382 43-276 52-351 48-302 59-382 32-284 35-358 44-284 54-358 1/6 1/6 95 95 2 x 195 2 x 276 see diagram 2 x 400 2 x 485 97.6/88.1 98.5/88.7 108.7/98.1 109.0/98.2 93 93 95 95 97 97 479 598 28 33 21 25 5.5/6.0 5.9/6.0 520 640	D (460)
• Nominal heat output at 80/60 °C, natural gas 1)		kW	21-228	33-278	35-354	47-436
• Nominal heat output at 50/30 °C, natural gas ¹⁾		kW	25-252			51-466
• Nominal heat output at 80/60 °C, propane 2)		kW	32-226	43-276	52-351	66-434
• Nominal heat output at 50/30 °C, propane 2)		kW	35-252	48-302	35-354 38-382 52-351 59-382 35-358 54-358 1/6 95 2 x 276 diagram - 2 x 485 98.5/88.7 1 109.0/98.2 93 95 97 598 - 33 25 5.9/6.0 640 sional drawing 17.4-80 37-57 80 3.6-36.9 4.3-44.0 2.2-14.7 1 x 230 38/302 8 20 5-40	73-466
Nominal heat input with natural gas 3)		kW	23-232	32-284		47-446
Nominal heat input with propane ²⁾		kW	33-232	44-284	54-358	68-446
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
• Operating temperature max. (T _{max})		°C	95			95
Boiler water content (V _(H20))		1	2 x 207			2 x 265
Flow resistance boiler Minimum circulation water quantity		l/h		see a	agram	
Boiler weight (without water capacity, incl. cladding)		kg	2 x 390	2 x 400	2 x 485	2 x 505
Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.6/88.9			98.2/88.5
		%	108.7/98.1			108.4/97.8
 Boiler efficiency at 30 % partial load (NCV/GCV) 4) Room heating energy efficiency 		70	100.7730.1	100.7750.1	103.0/30.2	100.4/37.0
- without control	ηs	%	93	93	93	93
- with control	ηs	%	95			95
- with control and room sensor	ηs	%	97	97	97	97
- annual energy consumption	Q_{HE}	GJ	386	479	598	751
• NOx class (EN 15502)			-	-	-	6
Nitrogen oxide emissions (EN 15502) (GCV)		mg/kWh	25		8 35-354 2 38-382 6 52-351 2 59-382 4 35-358 4 54-358 1/6 95 5 2 x 276 8 diagram - 0 2 x 485 3.1 109.0/98.2 93 95 97 598 - 33 25 0 5.9/6.0 640 ensional drawing 0 17.4-80 37-57 80 33-37-57 80 34-34-40 67 67 67 67 67 67 67 67 67 67	37
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	31			13
• O ₂ content in flue gas min./max. output		%	5.9/5.6			6.0/5.9
Heat loss in standby mode (EN 15502) (50°C) The standby mode (EN 15502) (50°C) The standby mode (EN 15502) (50°C)		Watt	520		88 35-354 102 38-382 16 52-351 102 59-382 14 35-358 14 54-358 1 1/6 15 2 x 276 16 ee diagram 100 2 x 485 18.1 98.5/88.7 18.1 109.0/98.2 193 195 197 198 198 109 109 117.4-80 117.4-80 117.4-80 117.4-80 118.1 37-57 118.1 38-38 118.1 38-3	640
• Dimensions				see almensi	onal drawing	
Gas flow pressure min./max. Network gas F/L.		mhar	17 / 00	17 / 90	17 / 90	17 / 90
- Natural gas E/LL - Propane		mbar mbar	17.4-80 37-57			17.4-80 37-57
Gas inlet pressure max. (idle pressure)		mbar	80			80
• Gas connection values at 15 °C/1013 mbar:						
- Natural gas E – (Wo = 15.0 kWh/m ³) NCV = 9.7 kWh/m ³		m ³ /h	2.4-23.9	3.3-29.3	3.6-36.9	4.8-46.0
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m ³ /h	2.8-28.5	3.9-34.9	4.3-44.0	5.8-54.9
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m ³ /h	1.4-9.5	1.8-11.6	2.2-14.7	2.8-18.3
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230
Electrical power consumption min./max.		Watt	41/280	43/450	38/302	49/456
• Standby		Watt	7			8
Type of protection		IP	20			20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40
Sound power level Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	76	33-278 35-354 35-302 38-382 43-276 52-351 48-302 59-382 32-284 35-358 44-284 54-358 1/6 1/6 95 95 2 x 195 2 x 276 see diagram 2 x 400 2 x 485 97.6/88.1 98.5/88.7 9 1 108.7/98.1 109.0/98.2 11 93 93 95 95 97 97 479 598 28 33 21 25 5.5/6.0 5.9/6.0 520 640 see dimensional drawing 17.4-80 17.4-80 37-57 37-57 80 80 3.3-29.3 3.6-36.9 3.9-34.9 4.3-44.0 1.8-11.6 2.2-14.7 1 x 230 1 x 230 43/450 38/302 8 8 20 20 5-40 5-40 81 67 24 30 4.2 4.2 B23, B23P, C53, C63	70	
- Flue gas noise radiated from the mouth		dB(A)	-	-	-	-
(DIN 45635 part 47) (room air dependent/independent of room air)		ub(A)				
Condensate quantity (natural gas) at 50/30 °C		l/h	22	24	30	40
• pH value of the condensate (approx.)		pН	4.2			4.2
• Construction		•				
Flue gas system				220, 220.	, 555, 555	
- Time gas system - Temperature class			T120	T120	T120	T120
- Flue gas mass flow at max. nominal heat input (dry)		kg/h	376			688
- Flue gas mass flow at min. nominal heat input (dry)		kg/h	37	51	55	63
- Flue gas temperature at max. nominal heat output and 80/60 °C		°C	64			69
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C	43	45	46	47
- Flue gas temperature at min. nominal heat output and 50/30 °C		°C	29	28	29	29
- Max. permissible temperature of the combustion air		°C	48	48 360	48 464	48 560
 Combustion air flow rate Maximum supply pressure for combustion air supply and flue gas line 		Nm³/h Pa	308 60	360 60	464 60	560 60
Maximum draught/underpressure at flue gas outlet		Pa	-30	-30	-30	-30
2 . F						

¹⁾ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval UltraGas [®] 2 D (600-1000)
-----------------------------------	-----------

HOVAI UITRAGAS 2 D (600-1000)								
Туре			D (600)	D (700)	D (800)	D (900)		
 Nominal heat output at 80/60 °C, natural gas ¹⁾ 		kW	54-548	67-630	62-724	73-830		
• Nominal heat output at 50/30 °C, natural gas 1)		kW	58-598	70-704	69-798	77-902		
• Nominal heat output at 80/60 °C, propane 2)		kW	83-548	94-622	109-722	124-816		
• Nominal heat output at 50/30 °C, propane ²⁾		kW	93-598	109-704	123-798	138-902		
• Nominal heat input with natural gas ³⁾		kW	54-564	64-662	62-748	71-854		
Nominal heat input with propane ²⁾		kW	87-564	102-662	114-748	130-854		
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6		
Operating temperature max. (T _{max})		°C	95	95	95	95		
• Boiler water content (V _(H20))		ı	2 x 472	2 x 452	2 x 432	2 x 412		
• Flow resistance boiler				see di	agram			
Minimum circulation water quantity		l/h	-	-	-	-		
Boiler weight (without water capacity, incl. cladding)		kg	2 x 730	2 x 765	2 x 800	2 x 830		
• Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.2/88.5	98.2/88.5	98.2/88.5	98.2/88.5		
Boiler efficiency at 30 % partial load (NCV/GCV) 4)		%	109.2/98.4	108.9/98.1	109.0/98.2	108.9/98.1		
Room heating energy efficiency								
	ηs	%	94	93	93	_		
	ηs	%	96	95	95	-		
- with control and room sensor	ηs	%	98	97	97	-		
- annual energy consumption	Q_{HE}	GJ	926	1076	1212	-		
• NOx class (EN 15502)			6	6	6	6		
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	39	45	39	45		
 Carbon monoxide emissions at 50/30 °C (related to 3 % of O₂) 	CO	mg/Nm ³	18	26	23	30		
 O₂ content in flue gas min./max. output 		%	5.5/5.8	5.7/5.7	5.9/5.9	6.0/5.6		
Heat loss in standby mode (EN 15502) (50°C)		Watt	860	860	860	860		
• Dimensions				see dimension	onal drawing			
Gas flow pressure min./max.								
- Natural gas E/LL		mbar	17.4-80	17.4-80	17.4-80	17.4-80		
- Propane		mbar	37-57	37-57	37-57	37-57		
Gas inlet pressure max. (idle pressure)		mbar	80	80	80	80		
Gas connection values at 15 °C/1013 mbar:								
- Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³		m³/h	5.6-58.1	6.6-68.2	6.4-77.1	7.3-88.0		
- Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³		m ³ /h	6.6-69.4	7.9-81.4	7.6-92.0	8.7-105.0		
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m³/h	3.6-23.1	4.2-27.1	4.7-30.7	5.3-35.0		
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230		
Electrical power consumption min./max.		Watt	51/730	55/700	56/1036	56/1180		
• Standby		Watt	5	5	5	5		
Type of protection		IP	20	20	20	20		
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40		
Sound power level								
- Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	76	73	76	77		
- Flue gas noise radiated from the mouth		dB(A)	-	-	-	-		
(DIN 45635 part 47) (room air dependent/independent of room air)								
Condensate quantity (natural gas) at 50/30 °C		l/h	44	50	56	58		
pH value of the condensate (approx.)		pН	4.2	4.2	4.2	4.2		
Construction			B23, B23P, C53, C63					
Flue gas system								
- Temperature class			T120	T120	T120	T120		
- Flue gas mass flow at max. nominal heat input (dry)		kg/h	890	1044	1182	1348		
- Flue gas mass flow at min. nominal heat input (dry)		kg/h	85	101	98	112		
- Flue gas temperature at max. nominal heat output and 80/60 °C		°C	64	65	66	67		
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C	43	44	48	47		
- Flue gas temperature at min. nominal heat output and 50/30 °C		°C	29	29	29	29		
- Max. permissible temperature of the combustion air		°C	48	48 856	48	48		
- Combustion air flow rate		Nm³/h Pa	728 60	856 60	966 60	1104 60		
 Maximum supply pressure for combustion air supply and flue gas line Maximum draught/underpressure at flue gas outlet 		Pa Pa	-30	-30	-30	-30		
Maximum draughtranderpressure at flue gas outlet		. u	50	30	30	00		

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m3 is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval UltraGas [®] 2 D (1000-1600)						
Туре			D (1000)	D (1240)	D (1400)	D (1600)
• Nominal heat output at 80/60 °C, natural gas 1)		kW	71-898	125-1160	132-1306	150-1486
• Nominal heat output at 50/30 °C, natural gas 1)		kW	77-982	136-1244	146-1406	166-1608
• Nominal heat output at 80/60 °C, propane 2)		kW	133-882	173-1139	193-1286	233-1488
• Nominal heat output at 50/30 °C, propane 2)		kW	147-982	184-1244	208-1406	254-1610
Nominal heat input with natural gas ³⁾		kW	71-926	124-1182	134-1336	151-1518
• Nominal heat input with propane ²⁾		kW	140-926	179-1182	201-1336	236-1518
Operating pressure heating min./max. (PMS)		bar	1/6	1/6	1/6	1/6
Operating temperature max. (T _{max})		°C	95	95	95	95
Boiler water content (V _(H20))		1	2 x 408	2 x 536	2 x 509	2 x 831
Flow resistance boiler				see di	agram	
Minimum circulation water quantity		l/h	-	-	-	-
Boiler weight (without water capacity, incl. cladding)		kg	2 x 855	2 x 1090	2 x 1135	2 x 1435
Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.2/88.5	98.2/88.5	98.2/88.5	98.3/88.6
Boiler efficiency at 30 % partial load (NCV/GCV) 4)		%	109.0/98.2	109.0/98.2	108.9/98.1	109.1/98.3
Room heating energy efficiency						
- without control	ηs	%	-	-	-	-
- with control	ηs	% %	-	-	-	-
- with control and room sensor- annual energy consumption	ηs Q _{HE}		- -	-	-	-
• NOx class (EN 15502)	≪HE	00	6	6	6	6
Nitrogen oxide emissions (EN 15502) (GCV)	NOx	mg/kWh	50	33	40	36
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)	CO	mg/Nm ³	46	24	26	23
• O ₂ content in flue gas min./max. output		%	5.5/5.8	5.9/6.0	6.0/5.7	6.0/5.8
Heat loss in standby mode (EN 15502) (50°C)		Watt	860	1080	1080	1200
• Dimensions				see dimensi	onal drawing	
Gas flow pressure min./max.						
- Natural gas E/LL		mbar	17.4-80	17.4-80	17.4-80	17.4-300
- Propane		mbar	37-57	37-57	37-57	37-57
Gas inlet pressure max. (idle pressure)		mbar	80	80	80	300
• Gas connection values at 15 °C/1013 mbar:		3	72055	12 0 121 0	12 0 127 7	15 6 156 5
- Natural gas E – (Wo = 15.0 kWh/m ³) NCV = 9.7 kWh/m ³		m ³ /h	7.3-95.5	12.8-121.9	13.8-137.7	15.6-156.5
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		m ³ /h	8.7-113.9	15.3-145.4	16.5-164.3	18.6-186.7
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m ³ /h	5.7-38.0	7.3-48.4	8.2-54.8	9.7-62.2
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230
Electrical power consumption min./max.		Watt	57/1432	63/1662	67/2120	94/2024
• Standby		Watt	5	5	5	7
Type of protection		IP	20	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40
Sound power level						
- Heating noise (EN 15036 part 1) (room air dependent)		dB(A)	81	78	79	81
- Flue gas noise radiated from the mouth		dB(A)	-	72	71	-
(DIN 45635 part 47) (room air dependent/independent of room air)						
 Condensate quantity (natural gas) at 50/30 °C 		l/h	74	102	96	114
· · · · · · · · · · · · · · · · · · ·						
• pH value of the condensate (approx.)		рН	4.2	4.2	4.2	4.2
· · · · · · · · · · · · · · · · · · ·		рН	4.2	4.2 B23, B23P		4.2

T120

1472

112

66

44

28

48

1204

60

-30

kg/h

kg/h

°C

°C

°C

°C

Pa

Pa

Nm³/h

T120

1866

196

68

47

28

48

1528

60

-30

T120

2110

211

69

49

29

48

1726

60

-30

T120

2396

238

66

44

28

48

1962

60

-30

- Flue gas mass flow at max. nominal heat input (dry)

- Flue gas mass flow at min. nominal heat input (dry)

- Max. permissible temperature of the combustion air

- Maximum draught/underpressure at flue gas outlet

- Flue gas temperature at max. nominal heat output and 80/60 °C

- Flue gas temperature at max. nominal heat output and 50/30 °C

- Flue gas temperature at min. nominal heat output and 50/30 $^{\circ}\text{C}$

- Maximum supply pressure for combustion air supply and flue gas line

- Temperature class

- Combustion air flow rate

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

²⁾ Data related to NCV, conditional data

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

Hoval UltraGas [®] 2 D (2000-3100)						
Type			D (2000)	D (2200)	D (2600)	D (3100)
• Nominal heat output at 80/60 °C, natural gas ¹⁾		kW	185-1852	203-2076	241-2460	297-2894
Nominal heat output at 50/30 °C, natural gas ¹⁾		kW	205-1998	229-2224	269-2640	324-3100
Nominal heat output at 80/60 °C, propane ²⁾		kW	262-1852	299-2067	362-2455	427-2877
Nominal heat output at 50/30 °C, propane Nominal heat output at 50/30 °C, propane Propagation Nominal heat output at 50/30 °C, propane Nominal heat output at 50/30 °C, propane Nominal heat output at 50/30 °C, propane		kW	282-1998	316-2224	385-2640	453-3100
Nominal heat input with natural gas 3)		kW	187-1886	206-2114	247-2502	297-2938
Nominal heat input with natural gas Nominal heat input with propane 2)		kW	265-1886	306-2114	371-2502	437-2938
 Operating pressure heating min./max. (PMS) Operating temperature max. (T_{max}) 		bar °C	1/6 95	1/6 95	1/6 95	1/6 95
Boiler water content (V _(H20))		ı	2 x 756	2 x 718	2 x 1211	2 x 1118
• Flow resistance boiler		•	2 x 100		agram	ZXIIIO
Minimum circulation water quantity		l/h	_	-	-	-
Boiler weight (without water capacity, incl. cladding)		kg	2 x 1580	2 x 1635	2 x 2280	2 x 2445
Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)		%	98.2/88.5	98.2/88.5	98.2/88.5	98.2/88.5
 Boiler efficiency at 30 % partial load (NCV/GCV) 4) Room heating energy efficiency 		%	109.0/98.2	108.6/97.8	108.7/97.9	108.5/97.7
- without control	ηs	%	-	-	-	-
- with control	ηѕ	%	-	-	-	-
- with control and room sensor	ηs	%	-	-	-	-
- annual energy consumption	Q_{HE}	GJ	-	-	-	-
• NOx class (EN 15502)			6	6	6	6
Nitrogen oxide emissions (EN 15502) (GCV) Corbon managida emissions at E0/30 °C (related to 3 % of C)	NOx	mg/kWh	36 35	41 26	37	35
 Carbon monoxide emissions at 50/30 °C (related to 3 % of O₂) O₂ content in flue gas min./max. output 	СО	mg/Nm ³ %	25 6.0/5.0	26 6.0/5.9	23 6.0/5.9	23 6.0/6.0
Heat loss in standby mode (EN 15502) (50°C)		Watt	6.0/5.9 1200	1200	1480	1480
• Dimensions		wan	1200		onal drawing	1400
Gas flow pressure min./max.				SCC difficilisi	onal drawing	
- Natural gas E/LL		mbar	17.4-300	17.4-300	17.4-300	17.4-300
- Propane		mbar	37-57	37-57	37-57	37-57
Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar:		mbar	300	300	300	300
- Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³		m³/h	19.3-194.4	21.2-217.9	25.5-257.9	30.6-302.9
- Natural gas LL (G25) – (Wo = 12.4 kWh/m³) NCV = 8.13 kWh/m³		m ³ /h	23.0-232.0	25.3-260.0	30.4-307.7	36.5-361.4
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}		m ³ /h	10.9-77.3	12.6-86.6	15.2-102.5	17.9-120.4
Operating voltage (50/60 Hz)		V	1 x 230	1 x 230	1 x 230	1 x 230
,			3 x 400	3 x 400	3 x 400	3 x 400
Electrical power consumption min./max. Standby		Watt Watt	203/3746 7	203/3866 7	271/8222 5	301/8282 7
Standby Type of protection		IP	20	20	20	20
Permitted ambient temperature during operation		°C	5-40	5-40	5-40	5-40
• Sound power level		-				
 - Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth 		dB(A) dB(A)	86 -	85 -	89 -	88 -
(DIN 45635 part 47) (room air dependent/independent of room air)						
Condensate quantity (natural gas) at 50/30 °C		l/h	136	144	200	276
• pH value of the condensate (approx.)		рН	4.2	4.2	4.2	4.2
• Construction				B23, B23P	, C53, C63	
• Flue gas system			T100	T100	T100	T400
- Temperature class - Flue gas mass flow at max. nominal heat input (dry)		kg/h	T120 2976	T120 3338	T120 3950	T120 4460
- Flue gas mass flow at min. nominal heat input (dry)		kg/h	295	325	390	450
- Flue gas temperature at max. nominal heat output and 80/60 °C		°C	69	70	66	68
- Flue gas temperature at max. nominal heat output and 50/30 °C		°C	47	49	45	46
- Flue gas temperature at min. nominal heat output and 50/30 °C		°C	28	29	29	28
- Max. permissible temperature of the combustion air		°C	48	48	48	48
- Combustion air flow rate		Nm³/h	2438	2732	3234	3660

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H $_2$) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

Pa

60

-30

60

-30

- Maximum draught/underpressure at flue gas outlet

- Maximum supply pressure for combustion air supply and flue gas line

60

-30

60

-30

²⁾ Data related to NCV, conditional data

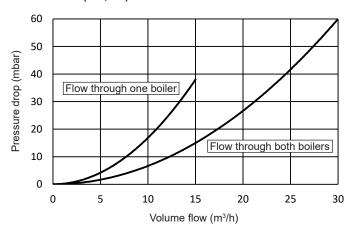
³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m3 is possible without resetting.

⁴⁾ Conversion acc. to EN 15502-1, Appendix J

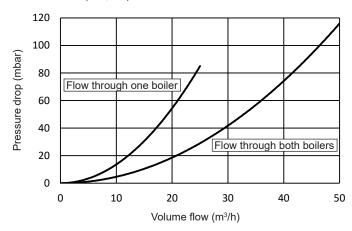
Hoval UltraGas [®] 2 DH (1400-3100)					
Туре			DH (1400)	DH (2200)	DH (3100)
• Nominal heat output at 80/60 °C, natural gas 1)	k	W	132-1306	203-2076	297-2894
• Nominal heat output at 50/30 °C, natural gas 1)	k	W	146-1406	229-2224	324-3100
• Nominal heat output at 80/60 °C, propane 2)	k	W	193-1286	299-2067	427-2877
• Nominal heat output at 50/30 °C, propane 2)	k	W	208-1406	316-2224	453-3100
Nominal heat input with natural gas 3)	k	W	134-1336	206-2114	297-2938
Nominal heat input with propane 2)	k	W	201-1336	306-2114	437-2938
Operating pressure heating min./max. (PMS)	b	ar	1/10	1/10	1/10
• Operating temperature max. (T _{max})	٥	С	95	95	95
Boiler water content (V _(H20))	I		2 x 509	2 x 709	2 x 1118
Flow resistance boiler Minimum circulation water quantity	1/	h		see diagram	
Boiler weight (without water capacity, incl. cladding)	k		2 x 1170	2 x 1735	2 x 2550
Boiler efficiency at 80/60 °C in full-load operation (NCV/GCV) 4)	9,	-	98.2/88.5	98.2/88.5	98.2/88.5
Boiler efficiency at 30 % partial load (NCV/GCV) Boiler efficiency at 30 % partial load (NCV/GCV) The second of t	,	•	108.9/98.1	108.6/97.8	108.5/97.7
Room heating energy efficiency			100.0/00.1	100.0/07.0	100.0/07.7
- without control	ηs %	6	-	-	-
- with control	ηs %	6	-	-	-
- with control and room sensor	ηs %		-	-	-
- annual energy consumption	Q _{HE} C	SJ .	-	-	-
• NOx class (EN 15502)			6	6	6
Nitrogen oxide emissions (EN 15502) (GCV)		ng/kWh	40	41	35
• Carbon monoxide emissions at 50/30 °C (related to 3 % of O ₂)		ng/Nm³	26	26	23
 O₂ content in flue gas min./max. output Heat loss in standby mode (EN 15502) (50°C) 	9 V	o Vatt	6.0/5.7 1080	6.0/5.9 1200	6.0/6.0 1480
• Dimensions	V	vall		e dimensional draw	
Gas flow pressure min./max.					3
- Natural gas E/LL	n	nbar	17.4-80	17.4-300	17.4-300
- Propane	n	nbar	37-57	37-57	37-57
 Gas inlet pressure max. (idle pressure) Gas connection values at 15 °C/1013 mbar: 		nbar	80	300	300
- Natural gas E – (Wo = 15.0 kWh/m³) NCV = 9.7 kWh/m³		n ³ /h	13.8-137.7	21.2-217.9	30.6-302.9
- Natural gas LL (G25) – (Wo = 12.4 kWh/m ³) NCV = 8.13 kWh/m ³		n ³ /h	16.5-164.3	25.3-260.0	36.5-361.4
- Propane (G31) NCV = 24.4 kWh/m ^{3 2)}	n	n ³ /h	8.2-54.8	12.6-86.6	17.9-120.4
Operating voltage (50/60 Hz)	V	′	1 x 230	1 x 230 3 x 400	1 x 230 3 x 400
Electrical power consumption min./max.	٧	Vatt	67/2120	203/3866	301/8282
• Standby	٧	Vatt	5	7	7
Type of protection	II		20	20	20
Permitted ambient temperature during operation	٥	С	5-40	5-40	5-40
• Sound power level		D(A)	70	0.5	00
- Heating noise (EN 15036 part 1) (room air dependent) - Flue gas noise radiated from the mouth		B(A) B(A)	79 71	85	88
(DIN 45635 part 47) (room air dependent/independent of room air)	u	D(A)	7 1	-	-
• Condensate quantity (natural gas) at 50/30 °C	1/	h	96	144	276
• pH value of the condensate (approx.)		 Н	4.2	4.2	4.2
Construction	·			323, B23P, C53, C6	3
Flue gas system					
- Temperature class			T120	T120	T120
- Flue gas mass flow at max. nominal heat input (dry)			2110	3338	4460
- Flue gas mass flow at min. nominal heat input (dry)	٥	0	211	325	450
 Flue gas temperature at max. nominal heat output and 80/60 °C Flue gas temperature at max. nominal heat output and 50/30 °C 		C C	69 49	70 49	68 46
ride gas temperature at max. norminal neat output and 50/50 C		C	49 29	29	28
- Flue gas temperature at min, nominal heat output and 50/30 °C					
 Flue gas temperature at min. nominal heat output and 50/30 °C Max. permissible temperature of the combustion air 	۰	С	48	48	48
· · · · · · · · · · · · · · · · · · ·		C Im³/h	48 1726	48 2732	48 3660
- Max. permissible temperature of the combustion air	N F				

 $^{^{1)}}$ In relation to natural gas G20 (100 % methane). With a hydrogen content (H₂) of up to 20 % by vol. in accordance with DVGW ZP3100 (D), an output reduction of up to 7 % is possible.

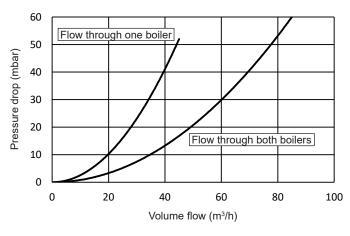
²⁾ Data related to NCV, conditional data

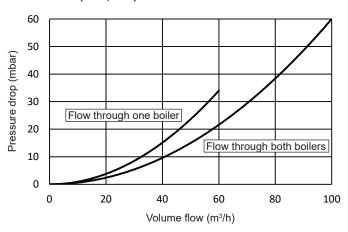

³⁾ Data related to NCV. The boiler series is tested for EE/H setting. With a factory setting to a Wobbe value of 15.0 kWh/m ³, operation in the Wobbe value range from 12.0 to 15.7 kWh/m³ is possible without resetting.

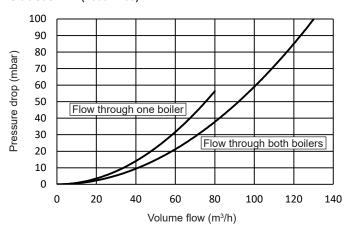
⁴⁾ Conversion acc. to EN 15502-1, Appendix J

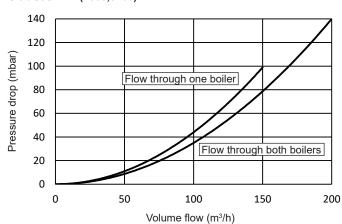

Hoval

Flow resistance on the heating water side

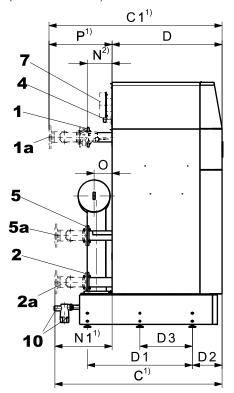

UltraGas® 2 D (250,300)


UltraGas® 2 D (380,460)


UltraGas® 2 D (600-1000)


UltraGas® 2 D (1240,1400)

UltraGas® 2 D (1600-2200)



UltraGas® 2 D (2600,3100)

UltraGas® 2 D (250-3100)

(Dimensions in mm)

- 1 Flow heating
- 1a Hydraulic connection flow (option) 2)
- 2 Low-temperature return
- 2a Hydraulic connection low-temperature return (option) 2)
- 3 Gas connection
- 4 Safety flow (safety valve, air vent)
- 5 High-temperature return
- 5a Hydraulic connection high-temperature return (option) 2)
- 6 Hydraulic shut-off valve (option)
- 7 Combustion air intake connector (option)
- 8 Flue gas outlet connection left or right
- 9 Flue gas collector
- 10 Condensate drain with siphon and screw connection for plastic pipe

- 11 Boiler feet (adjustable 30-80 mm)
- 12 Cleaning opening

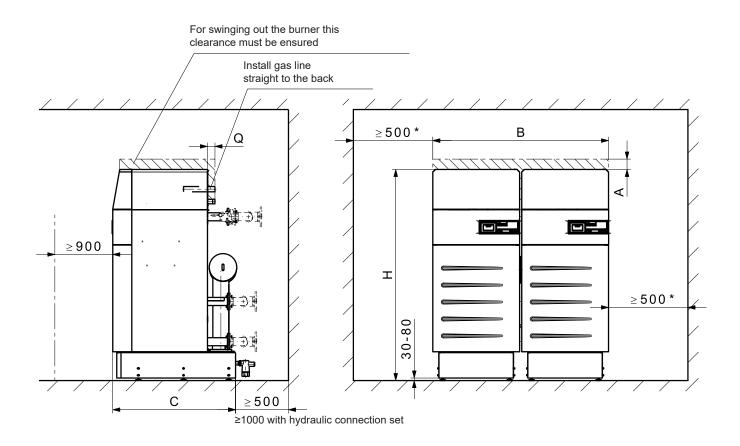
Notice

For subsequent technical details, see single boiler UltraGas® 2 (125-1550):

- Detailed dimensions and dimensions for multipart installation
- Mounting position of system flow sensor
- Safety fitting pipe flow/return for mounting the protection set and diaphragm pressure expansion tank

Туре	Α	В	C 1)	C1 1)	D	D1	D2	D3	G	Н	I	J	K	L	L1	M	N ²⁾	N1 1)	0	P 1)	R	S	U	X1	Υ
D (250,300)	1923	1560	1269	1317	799	754	242	-	1479	714	1116	597	334	120	840	902	207	470	142	518	1725	840	1725	99	-
D (380,460)	1968	1660	1363	1411	895	854	242	-	1517	717	1116	647	337	20	840	902	204	468	147	516	1778	840	1778	99	-
D (600-1000)	1923	1880	1807	1864	1165	1204	242	-	1447	745	1143	814	365	20	950	930	285	642	176	699	1735	950	1736	96	-
D (1240,1400)	2234	2240	1827	1884	1184	1294	242	-	1564	757	1195	904	377	20	1130	1019	286	643	205	700	1966	1130	1938	89	-
D (1600-2200)	2255	2600	2158	2218	1364	1480	242	-	1573	788	1280	1054	408	20	1310	1018	378	794	228	854	1959	1310	1959	89	-
D (2600,3100)	2395	3150	2571	2631	1640	1790	250	895	1600	822	1231	1339	442	30	1590	1322	420	931	240	991	2064	1590	2064	89	495
DH (1400)	2234	2240	1827	1884	1184	1294	242	-	1564	757	1195	904	377	20	1130	1019	286	643	205	700	1966	1130	1938	89	-
DH (2200)	2255	2600	-	-	1364	1480	242	-	1573	788	1280	1054	408	20	1310	1018	378	-	228	-	1959	1310	1959	89	-
DH (3100)	2395	3150	-	-	1640	1790	250	895	1600	822	1231	1339	442	30	1590	1322	390	-	240	-	2064	1590	2064	89	495
Туре			1,2,	5 ³⁾			1a	,2a,5	āa ^{2), 3)}		3	3	4		7			8		10					
Type D (250,300)		DN 6		5 ³⁾ 6/4-I	nole				5a ^{2), 3)}	nole	Rp		4 R 1	" 9	7 Ø 122	/125		8 54/256		10 N 40					
			5 / PN				N 80	/ PN				1"			7 Ø 122 Ø 197		Ø 25		0 O						
D (250,300)		DN 6	5 / PN 5 / PN	6 / 4-1	nole	DI	N 80 /	PN PN	6 / 4-h	nole	Rp	1" 1½"	R 1	4"		/200	Ø 25 Ø 25	54/256	010 610 610 610 610 610 610 610 610 610	N 40					
D (250,300) D (380,460)		DN 6 DN 10	5 / PN 5 / PN 00 / PN	6 / 4-l 6 / 4-l	nole hole	DN ND	N 80 / N 80 / I 125	/ PN / PN / PN	6 / 4-ł 6 / 4-ł	nole hole	Rp	1" 1½" 1½"	R 1 ¹	/" 4" 2"	Ø 197	/200 /200	Ø 25 Ø 25 Ø 30	54/256 54/256	S DI S DI	N 40 N 40					
D (250,300) D (380,460) D (600-1000)		DN 6 DN 10 DN 10	5 / PN 5 / PN 00 / PN 00 / PN	6 / 4-I 6 / 4-I I 6 / 4-	nole hole hole	DN DN DN	N 80 / N 80 / I 125 I 125	/ PN / PN / PN / PN	6 / 4-h 6 / 4-h I 6 / 8-	nole hole hole	Rp Rp	1" 1½" 1½" 2"	R 1 ¹ / R 1 ¹ / R 1 ¹ /	/" 4 /" 2	Ø 197 Ø 197	/200 /200 /250	Ø 25 Ø 25 Ø 30 Ø 35	54/256 54/256 06/308	6 D1 6 D1 8 D1 8 D1	N 40 N 40 N 40					
D (250,300) D (380,460) D (600-1000) D (1240,1400)		DN 6 DN 10 DN 10 DN 12	5 / PN 5 / PN 00 / PN 00 / PN 25 / PN	6 / 4-l 6 / 4-l 1 6 / 4-	nole hole hole hole	10 10 10 10	N 80 / N 80 / I 125 I 125 I 150	/ PN / PN / PN / PN / PN	6 / 4-h 6 / 4-h I 6 / 8-	nole hole hole hole	Rp Rp Rp Rp	1" 1½" 1½" 2" 2"	R 1½ R 1½ R 1½ R 2	/"	Ø 197 Ø 197 Ø 247	/200 /200 /250 /250	Ø 25 Ø 25 Ø 30 Ø 35 Ø 40	54/256 54/256 56/308	6 D1 6 D1 8 D1 8 D1 1 D1	N 40 N 40 N 40 N 40					
D (250,300) D (380,460) D (600-1000) D (1240,1400) D (1600-2200)		DN 6 DN 10 DN 10 DN 12 DN 15	5 / PN 5 / PN 5 / PN 00 / PN 00 / PN 50 / PN	6 / 4-l 6 / 4-l N 6 / 4- N 6 / 4- N 6 / 8-	hole hole hole hole hole	10 10 10 10	N 80 / N 80 / I 125 I 125 I 150	/ PN / PN / PN / PN / PN	6 / 4-h 6 / 4-h I 6 / 8- I 6 / 8-	nole hole hole hole	Rp Rp Rp Rp Rp	1" 1½" 1½" 2" 2" 2"	R 1½ R 1½ R 1½ R 2 R 2	/" ! /2" ! " !	Ø 197 Ø 197 Ø 247 Ø 247	/200 /200 /250 /250 /250	Ø 25 Ø 25 Ø 30 Ø 35 Ø 40 Ø 50	54/256 54/256 56/308 56/358 52/404	0 01 01 01 01 01 01 01 01 01 01 01 01 01	N 40 N 40 N 40 N 40 N 40					
D (250,300) D (380,460) D (600-1000) D (1240,1400) D (1600-2200) D (2600,3100)	[DN 6 DN 10 DN 10 DN 12 DN 15 DN 10	5 / PN 5 / PN 00 / PN 00 / PN 25 / PN 00 / PN	6 / 4-l 6 / 4-l N 6 / 4- N 6 / 4- N 6 / 8- N 6 / 8-	hole hole hole hole hole -hole	10 10 10 10	N 80 / N 80 / I 125 I 125 I 150	/ PN / PN / PN / PN / PN / PN	6 / 4-h 6 / 4-h I 6 / 8- I 6 / 8-	nole hole hole hole	Rp Rp Rp Rp Rp Rp	1" 1½" 1½" 2" 2" 2" 2"	R 1½ R 1½ R 1½ R 2 R 2 R 2	/"	Ø 197 Ø 197 Ø 247 Ø 247 Ø 247	/200 /200 /250 /250 /250 /250	Ø 25 Ø 25 Ø 30 Ø 35 Ø 40 Ø 50	54/256 54/256 56/308 56/358 52/404 54/506	6 DN 6 DN 8 DN 8 DN 4 DN 6 DN	N 40 N 40 N 40 N 40 N 40 N 40					

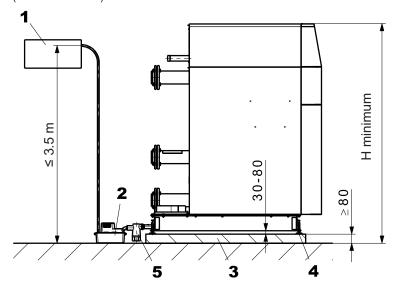
¹⁾ UltraGas® 2 D: dimensions incl. hydraulic connections and hydraulic butterfly valves


²⁾ UltraGas® 2 D and UltraGas® 2 DH: dimensions without hydraulic connection and hydraulic butterfly valve No hydraulic connections of the double boilers are available for UltraGas® 2 DH.

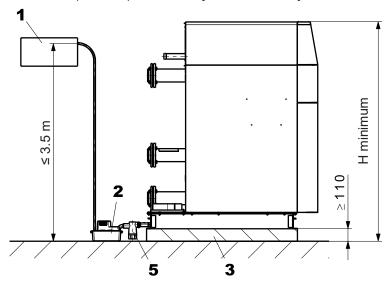
³⁾ DN = nominal diameter, PN = nominal pressure

Space requirements

UltraGas® 2 D (250-3100)


(Dimensions in mm)

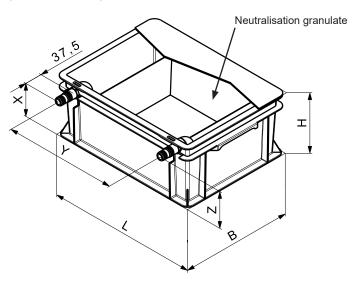
UltraGas [®] 2 type	A 1)	A minimum	В	С	H 3)	H minimum	Q
D (250,300)	169	106	1560	1060	1953	1934	125
D (380,460)	155	71	1660	1160	1998	1979	2
D (600-1000)	513	156	1880	1510	1953	1937	60
D (1240,1400)	121	121	2240	1600	2264	2255	155
D (1600-2200)	280	195	2600	1786	2285	2276	119
D (2600,3100)	291	154	3150	2104	2425	2416	163
DH (1400)	121	121	2240	1600	2264	2255	155
DH (2200)	280	195	2600	1786	2285	2276	119
DH (3100)	291	154	3150	2104	2425	2416	163


- 1) If room height is too small: Reduction of dimension possible (see A minimum).
- Attention! With A minimum the burner can not be swung out completely anymore! Cleaning with UltraGas® 2 D (250-460) and UltraGas® 2 D (1240-3100) still possible
- 3) Height value assumes adjustable feet are set to 30 mm
- The base plates cannot be installed without feet and the installer will have to fit a siphon with min. 70 mm barrier height. For details see next page.
- The heat generator can be placed with one side directly on the wall. However, to protect heat-sensitive walls against damage, a distance of at least 150 mm from the wall must be provided.
- The cleaning opening must be easily accessible. As a result, a minimum distance of 500 mm must be maintained on the cleaning opening side.

UltraGas® 2 (250-3100) with masonry base and adjustable feet (Dimensions in mm)

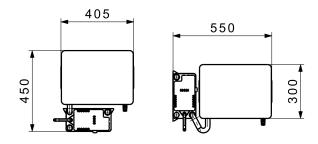
UltraGas® 2 H minimum 1) type D (250,300) 1934 D (380,460) 1979 D (600-1000) 1937 D (1240,1400) 2255 D (1600-2200) 2276 D (2600,3100) 2416 DH (1400) 2255 DH (2200) 2276 DH (3100) 2416

UltraGas® 2 (250-3100) with masonry base without adjustable feet

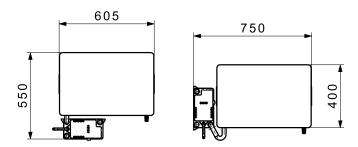

UltraGas® 2	
type	H minimum 1)
D (250,300)	1934
D (380,460)	1979
D (600-1000)	1937
D (1240-1400)	2255
D (1600-2200)	2276
D (2600,3100)	2416
DH (1400)	2255
DH (2200)	2276
DH (3100)	2416

- Neutralisation unit (option)
- Condensate pump (option)
- 3 Masonry base
- 4 Feet adjustable up to 30-80 mm
- Siphon 2)
- 1) Height value assumes adjustable feet are set to 30 mm
- ²⁾ Caution! The installer will have to fit a siphon with min. 70 mm barrier height.

- The steps of the climbing aid provided must be horizontal. Adapt the climbing aid if necessary.


 Base plates and feeds will not be re-
- funded!
- With H minimum, cleaning the siphon is more difficult.

Neutralisation unit HNB-0400 to HNB-1600 (Dimensions in mm)



	HNB-0400,-0800	HNB-1200,-1600			
Dimensions (L x W x H)	405 x 300 x 180 mm	605 x 400 x 180 mm			
Inlet height (Z)	128 mm				
Drain height (X)	118 mm				
Distance between the connections (Y)	approx. 350 mm	approx. 550 mm			

Neutralisation unit HNB-0400,-0800 and condensate pump (Dimensions in mm)

Neutralisation unit HNB-1200,-1600 and condensate pump (Dimensions in mm)

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, etc.) as well as the corresponding regional regulations.

The following standards and guidelines must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- · DVGW directives
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the filling and replacement water, the following conditions must be complied with:

The quality of the heating water must be checked and documented periodically:

- For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.
- For an installed heat output above 1000 kW, an check of the heating water is required twice a year.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Plants with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- In the case of bivalent heating systems, the values of the heat generator with the strictest requirement for water quality must be complied with.
- If only the boiler is replaced in an existing plant, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

see separate engineering sheet "Use of frost protection agent".

Heating room

- Boilers cannot be positioned in rooms in which halogen compounds can occur and into which combustion air can enter (e.g. laundrettes, hairdressers).
- Halogen compounds can be caused by cleaning and degreasing solutions, dissolvents, glue and bleaching lyes. Pay attention to the Procal leaflet, corrosion through halogen compounds.

Combustion air supply

The supply of combustion air must be guaranteed. There must be no possibility to close the air supply opening. For direct combustion air to boiler mount the connection for direct combustion air inlet. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

For the version with common flue gas line with overpressure, the flue gas excess pressure set must be imperatively mounted!

The minimum free cross-section for the combustion air can be assumed simplified as follows:

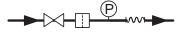
- Room air-independent operation with separate combustion air pipe to the boiler:

 0.8 cm² per 1 kW of output. The pressure drop in the combustion air pipe must be considered for the calculation of the flue gas system.
- In the UltraGas[®] 2, ventilation of the installation or boiler room must be guaranteed for operation independent from the room air.
- Room air-dependent operation:
 Minimum free cross-section of the opening into the open: 150 cm² or twice 75 cm² and additionally 2 cm² necessary for each kW of output over 50 kW for vent into the open.

Gas connection Commissioning

- Initial commissioning must be performed by a specialist technician from Hoval or a gas specialist technician.
- Burner setting values according to the installation instructions.

Manual gas shut-off tap and gas filter


Immediately in front of the boiler a manual gas shut-off device (tap) must be installed according to relevant regulations.

In the UltraGas® 2 (400-1550) type, an external gas filter must be installed in the gas supply line.

Make sure that the gas line from the external gas filter to the gas connection of the boiler is cleaned.

For the UltraGas® 2 (125-350) types, it is necessary to comply with the local regulations concerning the need for a gas filter.

Construction of a recommended gas connection

Legend:

Legend: manual gas shut-off valve

→/ gas hose/compensator

gas filter
pressure

pressure gauge with test burner and push-button valve

Type of gas

 The boiler is only to be operated with the type of gas stated on the rating plate.

Gas pressure natural gas

Necessary gas flow pressure at the boiler inlet: UltraGas® 2 D (250-1400) min. 17.4 mbar, max. 80 mbar

UltraGas® 2 D (1600-3100) min. 17.4 mbar, max. 300 mbar

Gas pressure propane

A gas pressure controller to reduce the boiler inlet pressure must be installed on-site for propane.

 Necessary gas flow pressure at the boiler inlet: UltraGas[®] 2 (125-1550) min. 37 mbar, max. 50 mbar

Gas pressure regulator

- The installation of a gas pressure regulator is only necessary if the gas flow pressure in the gas network exceeds the maximum permissible gas flow pressure of the UltraGas® 2 D or if there are considerable fluctuations in the gas flow pressure.
- Pressure fluctuations in the gas network must be prevented by suitable measures (e.g. gas storage tanks or pressure regulators). The local conditions must be checked in each individual case.

Closed heating system

The boiler is only approved for use in closed heating systems.

Minimum circulation water quantity

No minimum water circulation volume is required.

Calorifier connection

If a calorifier is connected, all heating groups must be provided with a mixer.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Space requirements

See "Dimensions" for information

Pump follow-on

For operating temperatures of the boiler above 85 °C, after each burner switch-off, the circulating pump must be in operation for at least 2 minutes (the pump after-run is included in the boiler controller with TopTronic® E control).

Heating boiler in the attic

If the gas boiler is positioned on the top floor, the installation of a low water protection, which automatically turns the gas burner off in case of water shortage, is recommended.

Condensate drain

- A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority or sewer operator.
- The condensate from the flue gas system can be discharged through the boiler. A condensate trap is not needed anymore with the flue gas system.
- The condensate must be conducted openly (funnel) into the sewage system.
- · Suitable materials for condensate drain:
- stoneware pipes
- pipes made from glass
- pipes made from stainless steel
- pipes made from plastic: PVC, PE, PP, ABS and UP
- A siphon must be installed at the condensate outlet on the gas boiler (included in the boiler scope of delivery).

Diaphragm pressure expansion tank

- An adequately dimensioned diaphragm pressure expansion tank must be provided.
- The diaphragm pressure expansion tank has to be installed in principle at the heating return, or at the safety flow.
- Starting from 70 °C an intermediate tank is necessary.

Allocation of gas filters for UltraGas® 2

UltraGas® 2 type	Gas throughput m³/h	Gas filter type	Dimension	Pressure drop gas filter (with clean filter) mbar
(125)	11.9	70602/6B	Rp 1"	0.2
(150)	14.2	70602/6B	Rp 1"	0.3
(190)	18.0	70603/6B	Rp 1½"	0.2
(230)	22.4	70603/6B	Rp 1½"	0.2
(300)	29.2	70603/6B	Rp 1½"	0.3
(350)	33.9	70603/6B	Rp 1½"	0.4
(400)	38.6	70603/6B	Rp 1½"	0.6
(450)	44.0	70603/6B	Rp 1½"	0.7
(500)	46.4	70631/6B	Rp 2"	0.5
(620)	59.3	70631/6B	Rp 2"	0.7
(700)	67.0	70631/6B	Rp 2"	0.8
(800)	76.1	70631/6B	Rp 2"	0.9
(1000)	94.6	70631/6B	Rp 2"	1.4
(1100)	106.0	70631/6B	Rp 2"	1.6
(1300)	125.5	70610F/6B	DN 65	1.5
(1550)	147.3	70610F/6B	DN 65	2.1

Safety valve

At the safety flow a safety valve and an automatic exhauster must be installed.

Noise damping

The following measures are possible for sound insulation:

- Make boiler room walls, ceiling and floor as solid as possible.
- If there are living areas above or below the boiler room, connect pipes flexibly using expansion joints.
- Connect circulating pumps to the piping network using expansion joints

Noise level

- The acoustic power level value is dependent on the local and spacial circumstances.
- The acoustic pressure level is dependent on the installation conditions and can for instance be 5 to 10 dB(A) lower than the acoustic power level at a distance of 1 m.

Recommendation:

If the combustion air intake opening is located on the house facade near a noise-sensitive place (window of bedroom, garden terrace, etc.), we recommend using a silencer in the combustion air duct.

Flue gas system

- Gas boilers must be connected to a certified and approved flue gas system such as flue gas lines.
- Flue gas lines must be gas-, condensateand over pressure-tight.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas system must be connected with an angle, so that the resulting condensate of the flue gas system can flow back to the boiler and can be neutralised there before discharging into the canalisation.
- Gas boilers with condensation heat utilisation are to be connected to a flue gas line min. temperature class T120.
- A flue gas temperature limiter is integrated into the boiler.

Standard values for flue gas line dimensions

Standard values for the flue gas line dimensions can be found in the following table.

Table with bases for calculation

- Calculation based on max. 1000 m above sea level.
- Installation room with supply air opening (room air dependent operation)
- An individual calculation must be carried out for room air-independent operation (accessories as option) or a combustion air supply via a duct.
- Connecting line was calculated with max. 5 m.
- Flue gas overpressure set:
 Mandatory, included in the scope of delivery!
- The first 2 m of the flue gas line must be configured with the same dimension as the flue gas connector, after which the size of the flue gas system can be selected according to the table below.

Table "Standard values for flue gas line dimensions"

Boiler		Flue gas line (smooth walled)	Number of elbows 90° (flue gas + combustion air)					
UltraGas® 2	Internal Ø flue gas outlet	Designation	Total pipe length in m (flue gas + combustion air)					
type	mm	DN	1	2	3	4		
D (250) D (300)	254 254	200	45 44	44 43	43 43	43 42		
D (380)	254	225	46	45	44	43		
D (460)	254	250	47	46	45	44		
D (600) D (700) D (800)	306 306 306	300	48 47 46	47 46 45	46 45 44	45 44 43		
D (900) D (1000) D (1240)	306 306 356	350	50 48 47	50 48 46	50 47 45	50 46 44		
D (1400) D (1600)	356 402	400	48 46	47 45	46 44	45 43		
D (2000)	402	450	47	46	45	44		
D (2200) D (2600) D (3100)	402 504 504	500	46 48 48	45 48 47	44 47 46	43 46 45		
DH (1400) DH (2200) DH (3100)	356 402 504	400 500	48 46 48	47 45 47	46 44 46	45 43 45		

Notice: The values in the table "Standard values for flue gas line dimensions" are standard values for reference.

An exact calculation for the flue gas duct must be made on-site.

For chimney systems above 25 m effective height, negative pressure in the chimney is to be expected in some operating conditions.

Therefore, we recommend an individual design of the chimney system and checking the individual pressure conditions.

Looking for the appropriate hydraulic schematic? Please contact your local Hoval partner.

Hoval UltraOil® (16-80) Oil-fired condensing boiler for ecological heating oil EL low-sulphur

Boiler

- Oil condensing boiler according to EN 303 part 1 and 2; EN 15034 and EN 15035 (only for UltraOil® (16-50))
- · For the combustion of:
 - heating oil EL sulphur-free according to ÖNORM C1109 with sulphur content
 10 ppm
 - heating oil EL low-sulphur according to DIN 51603-1 with sulphur content < 50 ppm
 - paraffinic fuels (HVO, XtL) according to DIN EN 51603-8
 - admixing up to 15 % FAME is possible according to DIN 51603-6
- Boiler made of steel with condensation design
- Components that come into contact with flue gas and condensate are made from high-alloyed stainless steel
- Maximum flue gas condensation by heating surfaces made of aluFer® composite pipe and 2-stage operation Flue gas side: aluminium Water side: stainless steel
- No lower delimitation of the boiler water temperature and the boiler return temperature
- No minimal water circulation necessary
- Boiler door
 - UltraOil® (16-50): top, to the left UltraOil® (65,80): top, backwards
- Thermal insulation at the boiler body: 80 mm mineral wool mat and glass fabric
- UltraOil® (16-50): Boiler completely cased with steel plate, red powder coated
- UltraOil® (65,80): casing made of steel sheet, red powder coated, delivered separately packed
- Flue outlet
 UltraOil® (16-35,65,80) backwards to the top
 UltraOil® (50) to the top
- · Flue gas sound absorber:
- UltraOil® (50) integrated
 UltraOil® (16-35,65,80) see Accessories
- · Heating connections for:
 - flow
 - return high temperature
 - return low temperature

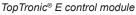
UltraOil® (16-50) on the left and right side UltraOil® (65,80) backwards

- Sound absorbing/thermal insulation hood
- Flue gas temperature monitoring UltraOil® (16-50): integrated UltraOil® (65,80): included in the scope of delivery
- Cleaning scraper included in the scope of delivery
- TopTronic® E controller installed

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp


UltraOil® (16-50)

Model range

UltraOil [®]		Max min. output 40/30 °C
type		kW
(16)	Α	12-16
(20)	Α	14-20
(25)	Α	16-25
(35)	Α	22-35
(50) 1)	Α	30-50
(65) 1)	Α	41-65
(80)		52-80

1) incl. room control module (room sensor) A+

Energy efficiency class of the compound system with control

- Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

UltraOil® (65,80)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management
- · Outdoor sensor
- · Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:
- module expansion heating circuit or
- module expansion heat balancing or
- module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Oil automatic function device OFA

- · Control function integrated for
 - flue gas sensor for safety shut-off
 - 0-10 V output for connecting a modulating main pump (incl. ΔT control with low consumption)
 - Standard plug connection for 2-stage burner 1 x 230 V
 - Variable input for plant-specific functions (heat generator block, return sensor, info sensor etc.)
 - Variable output for plant-specific functions (thermostat function, operating message, etc.)

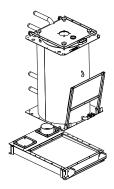
Further information about the TopTronic® E see "Controls"

Oil burner to UltraOil® (16-80)

- Fully automatic 2-stage pressure jet burner (blue flame burner)
- With motorised air damper
- · With oil pre-heating
- Oil burner tested by Hoval for ≤ 1000 m above sea level. 1.2 % output reduction per 100 m higher level

Heating armature groups and wall distributors

see "Various system components"


Optional

- Free-standing calorifiers, see Calorifiers
- · Flue gas systems
- · Version with/without neutralisation

Delivery

- UltraOil® (16-50): boiler incl. TopTronic® E control, control panel and sound attenuation cowl completely cased. Oil burner is delivered separately packed.
- UltraOil® (65,80): boiler incl. TopTronic® E control, control panel, casing with thermal insulation and oil burner are delivered separately packed.

Oil condensing boiler (multi-part delivery)

Hoval UltraOil® (multi-part delivery)

Oil condensing boiler with built-in Hoval TopTronic® E control for **multi-part delivery**. The flue gas collector is loosely screwed onto the boiler and can be removed on site to facilitate installation. Assembled on-site by the installer.

UltraOil®		Max min. output 40/30 °C
type		kW
(65) ¹⁾	Α	41-65
(80)	_	52-80

¹⁾ incl. room control module (room sensor) A

Energy efficiency class of the compound system with control

Part No.

7016 804 7016 805

UltraOil® (16-25)

Oniuon (10 20)					
Туре			(16)	(20)	(25)
 Nominal output 80/60 °C Nominal output 40/30 °C Max min. output 80/60 °C Max min. output 40/30 °C Heat input 		kW kW kW kW	15 16 11-15 12-16 11.3-15.5	19 20 14-19 14-20 13.8-19.5	24 25 15-24 16-25 15.4-24.5
Dimensions				see Dimensions	
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler 		°C	90	90 no min. limit no min. limit no min. limit	90
Safety temperature limiter setting (water side) Operating pressure		°C bar	110 3	110 3	110 3
 Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV) 		%	98.3/92.7	98.5/92.9	98.2/92.6
 Boiler efficiency at 40/30 °C in full-load operation (net calorific value NCV/gross calorific value GCV) 		%	103.5/97.6	103.9/98.0	103.8/97.9
Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV)		%	103.9/98.0	104.2/98.3	104.1/98.2
Stand-by deficiency qB at 70 °CEnergy efficiency class		Watt	220	230	240
- without control	ηѕ	%	92	92	92
- with control - with control and room sensor	ηs ηs	% %	94 96	94 96	94 96
• Combustion gas resistance, 12.5 % CO ₂ , 500 m above sea,	ıjs	mbar	0.30	0.29	0.29
level (tolerance +/- 20 %)		IIIDai	0.30	0.29	0.29
• Flow resistance boiler 1)		z-value	3.5	3.5	3.5
Water resistance at 10 K Water resistance at 20 K		mbar	6.6 1.7	10.6 2.6	16.6 4.2
Water flow volume at 10 K		mbar 34	1.7	2.6 1.74	4.2 2.18
Water flow volume at 10 K Water flow volume at 20 K		m³/h m³/h	0.69	0.87	1.09
Boiler water capacity		litres	66	63	68
Boiler gas volume		m³	0.034	0.035	0.046
Insulation thickness boiler body		mm	80	80	80
Weight (incl. casing, burner)		kg	140	145	157
Weight of transport		kg	134	139	151
Electrical power consumption min./max.		Watt	55/125	62/147	69/175
Standby		Watt	6	6	6
Type of protection ²⁾		IP	20	20	20
Acoustic power level incl. sound attenuation cowl • Ambient air dependent					
- Heating noise (EN 15036 part 1) • Ambient air independent		dB(A)	61	62	66
- Heating noise (EN 15036 part 1)		dB(A)	53	54	57
- Aspiration noise is radiated from the mouth (DIN 45835)		dB(A)	60	62	66
- Aspiration / exhaust noise - LAS - is radiated from the mouth (• Ambient air dependent and ambient air independent	DIN 45835) ³⁾	dB(A)	70	73	77
- Exhaust noise in the pipe (EN 15036 part 2) 3)		dB(A)	83	86	88
- Flue gas noise radiated from the mouth (DIN 45635 Part 47) 3)		dB(A)	69	71	75
 Condensate rate (heating oil EL) at 40/30 °C pH-value of the condensate 		l/h approx.	1.07 3.2	1.31 3.2	1.65 3.2
Construction type				B23, C53, C63	
 Flue gas system Temperature class Flue gas mass flow at nominal output 12.5 % CO₂ heating oil E Flue gas temperature at nominal output 80/60 °C 	EL.	kg/h °C	T120 24 75	T120 31 75	T120 38 75
Maximum supply pressure for supply air and flue gas line Maximum draught/underpressure at flue gas outlet		Pa Pa	50 -20	50 -20	50 -20
Combustion chamber dimensions Ø inside x length		mm	294 x 403	294 x 403	294 x 543
Combustion chamber volume		m³	0.027	0.027	0.037

 $^{^{1)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

UltraOil® (16-35,65,80): Data without sound absorber. Reduction by installation of a sound absorber possible.

²⁾ Indication relates to protection against contact with dangerous components ³⁾ UltraOil[®] (50): Sound absorber integrated

UltraOil [®] (35-80) Type			(35)	(50)	(65)	(80)
Nominal output 80/60 °C Nominal output 40/30 °C Max min. output 80/60 °C Max min. output 40/30 °C		kW kW kW	33 35 21-33 22-35	48 50 28-48 30-50	62 65 38-62 41-65	77 80 48-77 52-80
• Heat input		kW	20.9-33.8	28.4-48.4	39-63	50-78
• Dimensions		°C	90		nensions	00
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler Safety temperature limiter setting (water side) 		°C	110	no mi	90 n. limit n. limit n. limit 110	90
Operating pressure		bar	3	3	3	3
Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV)		%	98.5/92.9	98.7/93.1	98.5/92.9	98.4/92.6
 Boiler efficiency at 40/30 °C in full-load operation (net calorific value NCV/gross calorific value GCV) 		%		103.5/97.6		103.2/97.4
 Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV) 		%	104.2/98.3	104.7/98.8	104.5/98.6	104.2/98.3
 Stand-by deficiency qB at 70 °C Energy efficiency class 		Watt	250	290	480	480
- without control - with control	ηs ηs	% %	92 94	94 96	94 96	94 96
- with control and room sensor	ηs	%	96	98	98	98
• Combustion gas resistance, 12.5 % CO ₂ , 500 m above sea, level (tolerance +/- 20 %)		mbar	0.30	0.75	0.18	0.26
• Flow resistance boiler 1) • Water resistance at 10 K • Water resistance at 20 K • Water flow volume at 10 K • Water flow volume at 20 K		z-value mbar mbar m³/h m³/h	3.4 30.6 7.7 3.0 1.50	1.5 27.7 6.9 4.29 2.15	1.5 46.9 11.7 5.6 2.80	1.5 71.4 17.9 6.9 3.45
Boiler water capacity Boiler gas volume Insulation thickness boiler body Weight (incl. casing, burner) Weight of transport Electrical power consumption min./max. Standby Type of protection ²⁾		litres m³ mm kg kg Watt Watt	65 0.076 80 164 158 80/215 6 20	115 0.13 50 276 261 99/253 6 20	135 0.18 80 360 317 109/262 6 20	135 0.18 80 360 317 123/262 6 20
Acoustic power level incl. sound attenuation cowl						
Ambient air dependent Heating noise (EN 15036 part 1) Ambient air independent Heating poise (EN 15036 part 1)		dB(A)	63	71	69	65
- Heating noise (EN 15036 part 1)- Aspiration noise is radiated from the mouth (DIN 45835)		dB(A) dB(A)	60 62	67 66	-	
Aspiration / exhaust noise - LAS - is radiated from the mouth Ambient air dependent and ambient air independent	(DIN 45835) 3)	dB(A)	79	-	-	-
- Exhaust noise in the pipe (EN 15036 part 2) 3)	Δ.	dB(A)	93	85	91	95
- Flue gas noise radiated from the mouth (DIN 45635 Part 47) ³)	dB(A)	76	68	75	76
 Condensate rate (heating oil EL) at 40/30 °C pH-value of the condensate 		l/h approx.	2.28 3.2	3.52 3.2	4.0 3.2	5.0 3.2

- Flue gas temperature at nominal output 80/60 °C

- Maximum draught/underpressure at flue gas outlet

• Combustion chamber dimensions Ø inside x length

- Flue gas mass flow at nominal output 12.5 % CO_2 heating oil EL

- Maximum supply pressure for supply air and flue gas line

• Combustion chamber volume

Construction type

Flue gas systemTemperature class

B23

T120

126

75

50

-20

524 x 600

0.129

T120

102

73

50

-20

524 x 600

0.129

C53, C63

T120

76

75

50

-20

425 x 551

0.0781

T120

53

75

40

-20

0.037

294 x 543

kg/h °C

Pa

Pa

mm

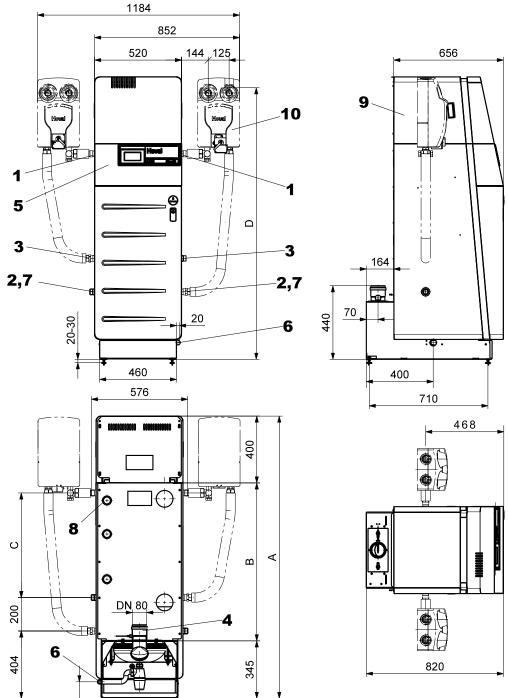
 $^{^{1)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

 $^{^{\}rm 2)}$ Indication relates to protection against contact with dangerous components

 $^{^{3)}}$ UltraOil $^{\tiny \circledR}$ (50): Sound absorber integrated

UltraOil® (16-35,65,80): Data without sound absorber. Reduction by installation of a sound absorber possible.

Oil burner	for UltraOil®	(16)	(20)	(25)	(35)	(50)	(65)	(80)
Oil burner	type	Blue flame	Blue flame	Blue flame	Blue flame	Blue flame	Blue flame	Blue flame
		burner	burner	burner	burner	burner	burner	burner
 Operating mode 		1st/2nd	1st/2nd stage	1st/2nd	1st/2nd	1st/2nd	1st/2nd	1st/2nd
		stage		stage	stage	stage	stage	stage
 Oil flow rate 	kg/h	0.95 1.34	1.16 1.64	1.3 2.07	1.76 2.85	2.38 4.06	3.6 5.3	5.0 6.5

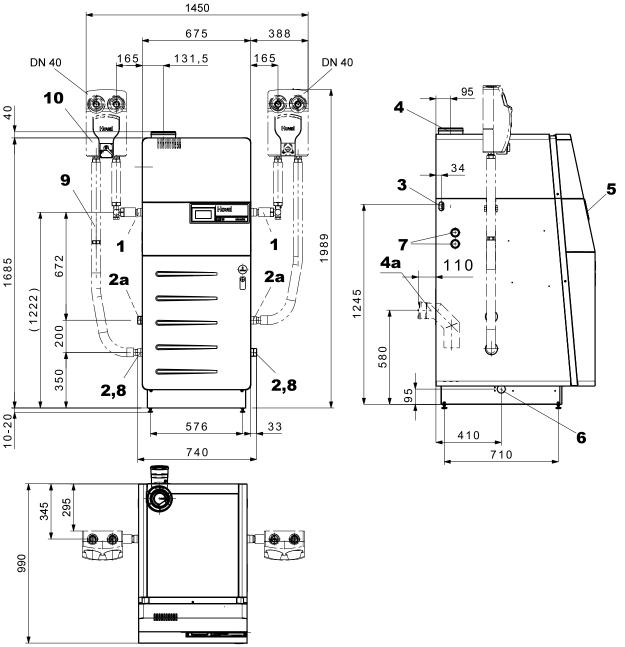

Flue gas silencer

for UltraOil® type	Connection on both sides	Overall length mm	Outer diameter mm	Attenuation dB (A)	Resistance Pa	Output kW
(16-25)	E80	810	160	11	12	25
(35) (50)	E100	810	180 integrated	13	10	35
(65) (80)	E150 E150	910 910	200 200	8 8	20 30	65 80

UltraOil® (16-35) (Dimensions in mm)

100

409

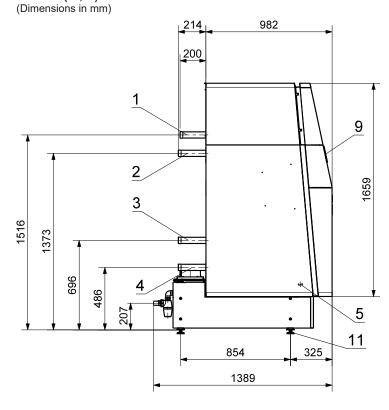

Туре В С D UltraOil® (16,20) 1550 486 1485 805 UltraOil® (25,35) 1690 945 626 1625

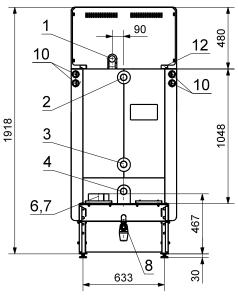
- Flow heating/safety flow R 1"
- Low-temperature return R 1"
- High-temperature return R 1" 3
- Flue gas outlet DN 80 4
- Control panel 5
- Condensate drain (left or right) incl. siphon (DN 25) and 2 m PVC passage tube Ø inside 19 x 4 mm
- 8 Electric cable entry point
- Sound attenuation cowl
- Heating armature group or charging group (option)

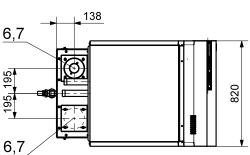
Space requirements

see separate page

UltraOil® (50) (Dimensions in mm)

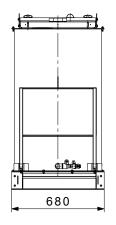


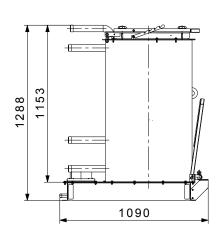

- 1 Flow heating/safety flow R 1 ½"
- 2 Low-temperature return R 1 ½"
- 2a High-temperature return R 1 ½"
- 3 Lead-through for oil pipe on left or right side
- 4 Concentric supply air/ flue gas connection C100/150
- 4a Flue gas connection at the back (option)
 - 5 Control panel
 - 6 Condensate drain (left or right) incl. syphon (DN 25) and 2 m PVC passage tube Ø inside 19 x 4 mm
 - 7 Electrical connection on the left or right hand side
- 8 Drain
- 9 Connection set (option)
- 10 Heating armature group or charging group (option)


Space requirements

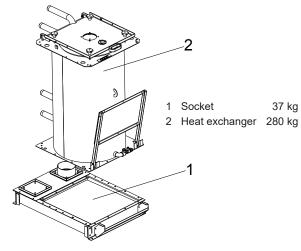
see separate page

UltraOil® (65,80)

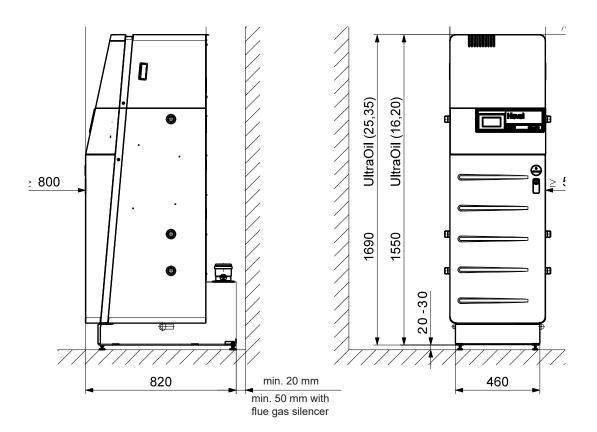

- 1 Safety flow R 1 1/2"
- 2 Flow for heating and calorifier R 1 ½"
- 3 High-temperature return R 1 ½"
- 4 Low-temperature return R 1 ½"
- 5 Drain 1/2"
- 6 Flue gas outlet inner Ø 155 mm
- 7 Cleaning aperture Ø 155 mm
- 8 Condensate drain incl. syphon DN 25
- 9 Control panel
- 10 Electric cable infeed
- 11 Boiler feet adjustable 20-80 mm
- 12 Lead-through for oil pipe on left or right side


Space requirements

see separate page


Overall unit dimensions UltraOil® (65,80)

(Dimensions in mm)



Weights for multi-part installation UltraOil® (65,80)

Space requirements (Dimensions in mm)

UltraOil® 1 35

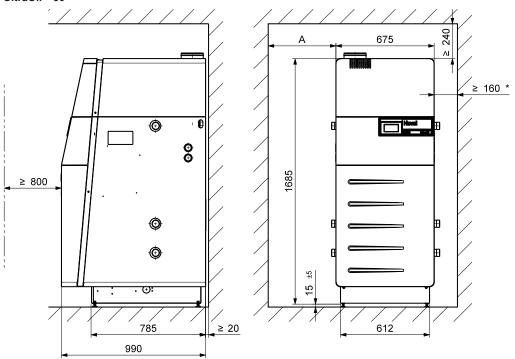
Boiler door incl. burner swivels upwards and to the left or to the front

A = minimum 150 mm *

- Burner service position in the front - boiler cleaning from the right

A = optimum 300 mm *

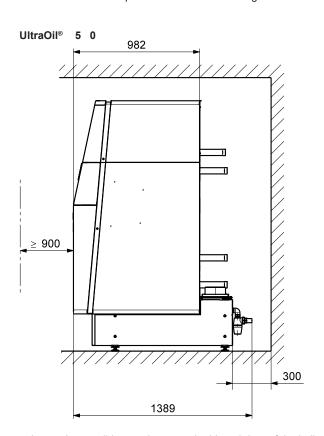
- Burner service position left boiler cleaning from the front
 A minimum gap of 160 mm is required to the right of the boiler

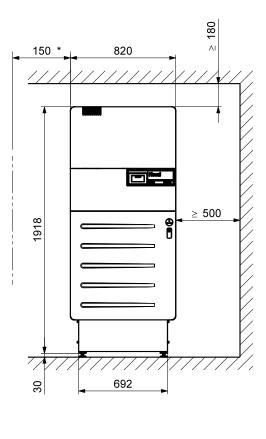

without armature group

500 mm with armature group

- The cleaning aperture must be easily accessible.
- Boiler rear side must be accessible.

Space requirements (Dimensions in mm)


UltraOil® 50



Boiler door incl. burner swivels upwards and to the left or to the front A = minimum 150 mm *

- Burner service position in the front boiler cleaning from the right
- A = optimum 300 mm * - Burner service position left - boiler cleaning from the front

without armature group 500 mm with armature group

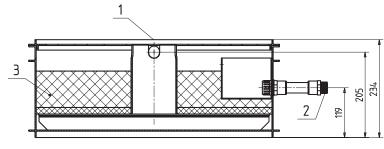
- It must be possible to swing open the hinged door of the boiler with the burner upward and rearward.
- Boiler rear side must be accessible.
- * The cleaning aperture must be easily accessible. As a result, a minimum distance of 500 mm must be maintained on the cleaning opening side.

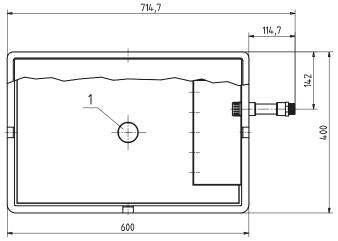
Neutralisation setup for UltraOil® (16-80)

(Dimensions in mm)

Neutralisation box type KB 23

Use


- Condensate discharge into lower drainage duct
- With condensate neutralisation
- Placed under or next to the boiler


Design

- Collecting tank with neutralisation unit
- 12 kg neutralisation granulate
- Connection line from boiler (siphon) to neutralisation box, if the installation location is underneath the boiler

On-site:

- With installation next to the boiler, connection lines from boiler (siphon) to the neutralisation box
- Discharge line from the neutralisation box

- 1 Condensate inlet from the boiler
- 2 Exit R 3/4"
- 3 Condensate tank with 12 kg granulate

Neutralisation box with pump type KB 24

Use:

- Condensate discharge into higher drainage duct
- With condensate pump, delivery head 3.5 m
- With condensate neutralisation, 12 kg granulate
- Placed under or next to the boiler.

Design

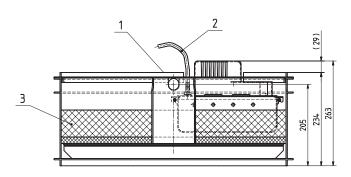
- Collecting tank with feed pump and neutralisation unit
- 12 kg neutralisation granulate
- Delivery head of the pump max. 3.5 m (2 dm³/min.)
- Silicone hose Ø 9/13 mm, length 4 m
- Electrical cable length 1.5 m with plug for connecting to boiler electrical panel if installation location is below boiler
- Plastic connection line Ø 25 mm, from boiler (siphon) to neutralisation box, if the installation location is underneath the boiler.

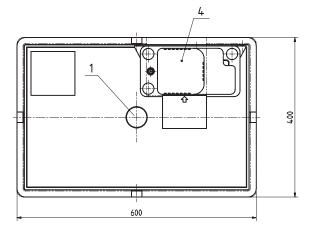
On-site:

- Discharge duct, if silicone hose too short.

For installation next to the boiler:

- Connection lines from boiler (siphon) to the neutralisation box
- Electrical connection from feed pump to electrical panel if supplied cable is too short.


Condensate box with pump type KB 22


Use:

- Condensate discharge into higher drainage duct
- With condensate pump, delivery height 3.5 m
- Placed under or next to the boiler.

Design

Design as for KB 24, but without neutralisation granulate.

- 1 Condensate inlet from the boiler
- 2 Outlet from pump, silicone hose Ø 9/13 mm, length 4 m
- 3 Condensate tank with 12 kg granulate (KB 24)
- 4 Condensate pump

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, ...) as well as the corresponding regional regulations.

The following requirements and directives must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer speci c speci cations

anufacturer speci c speci cations

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the Iling an replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the Iling an replacement water, the following conditions must be complied with:
 - Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
 - pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Systems with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- If only the boiler is replaced in an existing system, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

The planning sheet "Use of frost protection agent" is available from your Hoval contact person.

Combustion air

The combustion air supply must be guaranteed. Ensure that the air intake can not be closed or blocked. The connection for direct combustion air supply must be used for direct combustion air supply to the boiler (LAS system). It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

Room air-independent operation

with separate combustion air duct to the boiler:

- 0.8 cm² per 1 kW boiler capacity. The pressure drop in the combustion air duct must be taken into account when sizing the flue gas system.
- In the UltraOil®, ventilation of the installation room must be guaranteed for operation independent from the room air.

Ambient air dependent operation:

- Minimum free cross-section for the air opening can be assumed as follows by way of simplification. Nominal heat output is the determining factor!
- A minimum free cross-section of once 150 cm² or twice 75 cm² and an additional 2 cm² for each kW boiler capacity in excess of 50 kW is required for the air opening into the outside air.

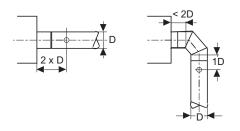
Oil burner mounting

- The standard burner plug connection must be positioned in the opposite direction to the swivelling direction of the boiler door.
- The space between the combustion pipe and the boiler door must be filled with the insulation material supplied.

Electric connection of the burner

- · Mains connection 1 x 230 V, 50 Hz, 10 A
- The burner must be connected to the standard plug connection of the boiler.
- The burner cable must be shortened so that the plug-in connection has to be parted to swing out the burner.

Sound absorption


Sound absorption is possible through the following steps:

- Make boiler room walls, ceiling and floor as thick as possible, install a silencer in the intake air opening, provide carriers and brackets for the pipes with noise insulation.
- If there are living areas above or below the boiler room, install rubber vibration dampers under the base rails of the boiler.
- Connect circulating pumps to the piping network using expansion joints.
- To dampen the flame noise in the chimney, silencers can be installed in the connection tube (possibly leave space for later installation).

Flue gas system

- The flue gas system must be made by an examined and certified flue gas line.
- The flue gas line must be certified gas-tight, humidity-insensitively, corrosion and acidproof as well as for flue gas temperatures up to 120 °C.
- The flue gas system must be suitable for the operation with over-pressure.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas line is to be laid with upward gradient, so that the resulting condensate of the flue gas system flows back into the boiler so that before deriving into drains it can be neutralised.
- When using flue gas lines made from plastic, a flue gas safety temperature limiter is prescribed.
 - Built in in the UltraOil® (16-80) already.
- In the connection pipe has to be integrated a closable flue gas measurement nozzle with circular inner diameter of 10-21 mm.
 The socket has to be led over the thermal insulation.

Dimensioning flue gas line

Sound power

The sound power level is independent of local and spatial influences.

The sound **pressure** level depends on installation conditions and can, for example, be 10 to 15 dB(A) lower than the sound **power** level at a distance of 1 m.

Recommendation:

If the air inlet at the facade is near a noise sensitive place (window of bedroom, terrace etc.), we recommend to use a sound absorber at the direct combustion air inlet.

Condensate drain

A boiler base is integrated in the UltraOil® for condensate collection and drainage.

- in accordance with local regulations.
- The condensate discharge must be carried out without backpressure and via siphon (already installed in the UltraOil®).
- The boiler can additionally be placed on a special boiler base.
- This achieves a condensate discharge height of 280 mm.
- Suitable materials for condensate drain:
- Stoneware pipes
- Pipes made from PVC
- Pipes made from polyethylene (PE)
- Pipes made from ABS or ASA
- The commercial system operator must inform the sewer operator if the exhaust gas condensate is discharged into the sewer system.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Heating system renovation notice

If an existing oil heating installation is replaced by Hoval UltraOil®, the following instructions regarding the oil tank and its refilling must be observed:

- The Hoval UltraOil® is only allowed to be operated with heating oil EL low-sulphur with sulphur content < 50 ppm (< 0.005 %).
- It is recommended for the oil tank to be cleaned before refilling it.
- A residual amount of heating oil EL in the oil tank may be mixed with heating oil EL lowsulphur, provided that the residual amount does not exceed the following values of the total content.
- Residual quantity of heating oil EL (sulphur content: 2000 ppm or 0.2 %) max. 3 % of tank volume
 Residual quantity of heating oil EL (sulphur content: 1000 ppm or 0.1) max. 5 % of tank volume
 Residual quantity of ecological heating oil EL (sulphur content: 500 ppm or 0.05 %) max. 10 % of tank volume
- In order to reach the permissible mixture ratio with heating oil EL low-sulphur taking account of the residual amount of heating oil in the oil tank, a 100 % tank filling is necessary.

Special project planning notices for heating systems with heating oil EL A Bio15

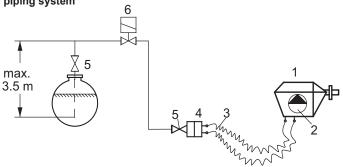
Heating oil EL A Bio15 is composed of heating oil EL low-sulphur with the addition of max. 15 % FAME.

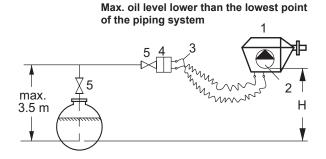
il Iters

Only oil filters suitable for ecological heating oil are allowed to be used. Filter elements made from copper, brass or plastics not compatible with ecological heating oil are not suitable. See accessories in the price section for suitable oil filters

Maintenance

It is essential for the filter to be renewed after the first heating season.


Oil line installation


- The Hoval UltraOil® is only allowed to be connected to 1-section oil lines. Max. suction height without intermediate pump 3.5 m, maximum line length 30 m.
- The lines must be positioned so that the boiler door can still be fully opened.
- A shut-off element must be installed before the flexible oil lines at the end of the rigid oil line (already installed in the "TOC Duo").
- An automatic heating oil fan is recommended in front of the burner to ensure troublefree operation.

- · ne pipe heating oil Iter
- In front of the burner, a one pipe heating oil filter with return flow supply and an insert for the UltraOil® (16-80) with a mesh width of 50-75 µm (e.g. sintered plastic) must be used at the level of the oil pump.
- Automatic heating oil deaerator with integrate lter
- When connecting an automatic heating oil deaerator with filter in front of the burner, the deaerator must be fitted approx. 100 mm above the oil pump. The use of these filters should comply with the specifications as for one pipe heating oil filters.
- The highest point of the piping should be max. 3.5 m above the tank suction pipe.
- Product pipelines must be installed in such a way that no liquid can emerge independently (rise) from the tank.

- If the highest point of the oil level in the oil tank is higher than the lowest point in the removal line, it is necessary to install a solenoid valve at the highest point in the oil line as close as possible to the oil tank.
- In the case of systems with several oil-fired boilers, the oil supply to the boilers must be ensured in all operating states, e.g. provide an independent connection line to the oil tank for each boiler.

Max. oil level higher than the lowest point of the piping system

- 1 Hoval-burner for 1-line connection with return flow
- 2 Oil pump
- 3 Oil hoses on the burner
- 4 Fine filter with return feed.

Filter element with cellulose, fineness 20 µm for heating oil EL low-sulphur with up to 15 % FAME, output 10 to 30 kW.

Sintered plastic insert 25-75 μm for heating oil EL low-sulphur 10 to 40 kW. > 40 kW with nickel strainer insert 100-150 $\mu m.$

- 5 Shut-off valve
- 6 Solenoid valve
- H = Suction height [m]

One pipe oil lines

Line diameter Ø inside 4 mm, max. permissible line length in m

	UltraOil®							
(16)	(20)	(25)	(35)	(50)	(65)	(80)		
30	30	30	30	20	14	12		
30	30	30	23	15	11	9		
30	29	23	16	10	8	6		
20	16	13	9	6	-	-		
	30 30 30	30 30 30 30 30 29	(16) (20) (25) 30 30 30 30 30 30 30 29 23	(16) (20) (25) (35) 30 30 30 30 30 30 30 23 30 29 23 16	(16) (20) (25) (35) (50) 30 30 30 20 30 30 30 23 15 30 29 23 16 10	(16) (20) (25) (35) (50) (65) 30 30 30 20 14 30 30 30 23 15 11 30 29 23 16 10 8		

This line sizing table provides indicative values for:

Low-sulphur heating oil EL or low-sulphur mixed heating oil EL with max. 15 % FAME (heating oil) content, oil temperature > 10 °C (indoor tank) up to 700 m above sea level, 1 filter, 1 valve, 6 elbows 90° (40 mbar).

For the project planning and sizing of suction installations for heating oil extra light and pipes made of copper or plastic pipes, please refer to the relevant literature; this also contains conversion calculations for oil temperature, viscosity, additional resistance values, influence of altitude above 700 m above sea level, etc.

Pipe systems that are oversized can lead to operational disturbance!

For this reason, in case of boiler exchange the pipe dimensioning table must be observed!

Diaphragm pressure expansion tank

 Ideally, the diaphragm pressure expansion tank should be connected to the heating system as described in our example applications, with a removable or sealable actuation device. This means that it is not necessary to drain the entire system in order to carry out work on the diaphragm pressure expansion tank.

Safety valve

 A safety valve and an automatic air vent must be installed in the safety flow

Looking for the appropriate hydraulic schematic?

Please contact your local Hoval partner.

Hoval UltraOil® (110-300) Oil-fired condensing boiler for ecological heating oil EL low-sulphur

Boiler

- Oil condensing boiler according to EN 303 part 1 and 2 and EN 15034
- · For the combustion of:
 - heating oil EL sulphur-free according to ÖNORM C1109 with sulphur content
 10 ppm
 - heating oil EL low-sulphur according to DIN 51603-1 with sulphur content < 50 ppm
 - paraffinic fuels (HVO, XtL) according to DIN EN 51603-8
- Boiler made of steel with condensation design
- Components that come into contact with flue gas and condensate are made from highalloyed stainless steel
- Maximum flue gas condensation by heating surfaces made of aluFer® composite pipe;
 Flue gas side: aluminium
 Water side: stainless steel
- No lower delimitation of the boiler water temperature and the boiler return temperature
- No minimal water circulation necessary
- Boiler door swivelling to the front right, swivelling to the left by conversion on the system
- Thermal insulation at the boiler body: 80 mm mineral wool mat and glass fabric
- Casing made of steel sheet, red powder coated, delivered separately packed
- · Flue outlet backwards
- Heating connections at top incl. counterflange, bolts and seals for:
 - flow
 - return high temperature
 - return low temperature
- Sound absorbing/thermal insulation hood
- · Water pressure sensor:
 - Fulfils the function of a minimum and maximum pressure limiter
- Replacement for the water shortage protection
- Flue gas temperature monitoring (installation on site)
- Cleaning set comprising scraper and implement holder (included in the scope of delivery)
- TopTronic® E controller installed

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management

wodei	rang
UltraO	il®
Ollido	

type	40/30 °C kW
(110)	83-110
(130)	104-130
(160)	119-160
(200)	155-200
(250)	189-250
(300)	227-300

- Analysis function
- · Weather display (with HovalConnect option)

Max. - min.

output

 Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
- bivalent and cascade managementOutdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- · RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 1 module expansion:
 - module expansion heating circuit or
 - module expansion heat balancing or
 - module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 2 controller modules **or**
- 1 controller module and 2 module expansions
- 3 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Oil automatic function device OFA

- Control function integrated for
- flue gas sensor for safety shut-off
- 0-10 V output for connecting a modulating main pump (incl. ΔT control with low consumption)
- Standard plug connection for 2-stage burner 1 x 230 V
- Variable input for plant-specific functions (heat generator block, return sensor, info sensor etc.)
- Variable output for plant-specific functions (thermostat function, operating message, etc.)

Further information about the TopTronic® E see "Controls"

Oil burner to UltraOil® (110-300)

- Fully automatic 2-stage pressure atomizer burner (blue burner)
- · Air termination flap
- · Fan follow-on time
- Completely wired up with 7+4-pin standard plug connection 1 x 230 V
- The oil burner is checked at the factory according to factory setting ≤ 1000 m above sea level. Higher altitudes result in a power reduction of 1.2 % per 100 m

Optional

- Free-standing calorifier, see Calorifiers
- · Flue gas systems
- Installation transport set for conditions of restricted access

Delivery

 Boiler, casing with thermal insulation, oil burner and TopTronic® E controller are separately packed and delivered.

On site

 Installation of thermal insulation, casing, control panel and burner

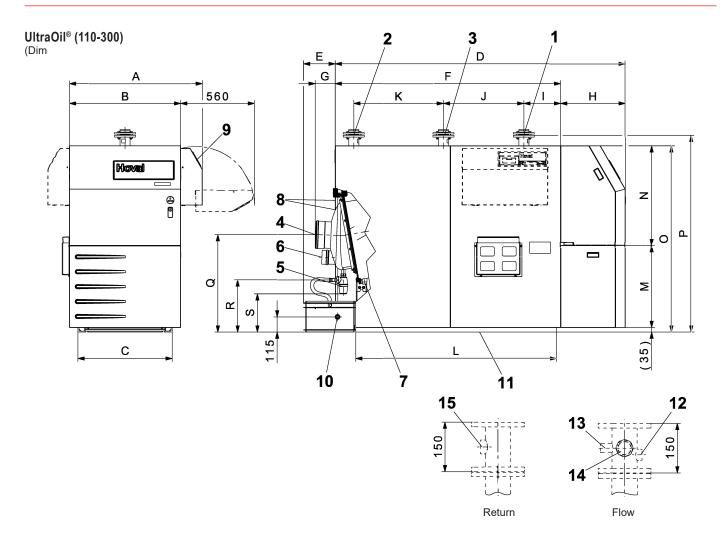
Heating armature groups and wall distributors see "Various system components"

UltraOil[®] (110-160)

Туре		(110)	(130)	(160)
Nominal output 80/60 °C	kW	105	124	152
Nominal output 40/30 °C	kW	110	130	160
• Max min. output 80/60 °C	kW	78-105	99-124	114-152
• Max min. output 40/30 °C	kW	83-110	104-130	119-160
Heat input	kW	80-106	100-125	115-154
• Dimensions			see Dimensions	
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler 	°C	90	90 no min. limit no min. limit no min. limit	90
Safety temperature limiter setting (water side)	°C	110	110	110
Operating pressure	bar	5	5	5
Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV)	%	99.1/93.5	99.0/93.4	98.7/93.1
 Boiler efficiency at 40/30 °C in full-load operation (net calorific value NCV/gross calorific value GCV) 	%	104.1/98.2	104.1/98.2	103.9/98.0
 Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV) 	%	105.0/99.1	104.8/98.9	104.5/98.6
Stand-by deficiency qB at 70 °C	Watt	500	500	500
• Combustion gas resistance, 12.5 % CO ₂ , 500 m above sea, level (tolerance +/- 20 %)	mbar	0.24	0.34	0.45
• Flow resistance boiler 1)	z-value	0.1	0.1	0.1
Water resistance at 10 K	mbar	8.9	12.4	18.8
Water resistance at 20 K	mbar	2.2	3.1	4.7
Water flow volume at 10 K	m³/h	9.4	11.1	13.7
Water flow volume at 20 K	m³/h	4.7	5.6	6.9
Boiler water capacity	litres	340.00	340.00	340.00
Boiler gas volume	m³	0.247	0.247	0.247
Insulation thickness boiler body	mm	80	80	80
Weight (incl. casing, burner)	kg	420	420	420
Weight of transport	kg	370	370	370
Electrical power consumption min./max.	Watt	140/360	152/550	167/550
• Standby	Watt	6	6	6
Acoustic power level incl. sound attenuation cowl • Ambient air dependent				
 - Heating noise (EN 15036 part 1) ²⁾ • Ambient air dependent 	dB(A)	65	67	67
- Exhaust noise in the pipe (EN 15036 part 2) 2)	dB(A)	86	89	92
- Flue gas noise radiated from the mouth (DIN 45635 Part 47)	dB(A)	75	76	78
Condensate rate (heating oil EL) at 40/30 °C	l/h	7.8	8.7	10.8
pH-value of the condensate	approx.	3.2	3.2	3.2
Construction type		B23	B23	B23
Flue gas system				
- Temperature class		T120	T120	T120
- Flue gas mass flow at nominal output 12.5 % CO ₂ heating oil EL	kg/h	163.6	193.0	252.0
- Flue gas temperature at nominal output 80/60 °C	°Č	68	70	75
- Maximum supply pressure for supply air and flue gas line	Pa	80	80	80
- Maximum draught/underpressure at flue gas outlet	Pa	-20	-20	-20
Combustion chamber dimensions Ø inside x length	mm	524 x 800	524 x 800	524 x 800
Combustion chamber volume	m³	0.172	0.172	0.172

 $^{^{1)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

UltraOil[®] (110-160)


_				
Туре		(110)	(130)	(160)
Nominal output 80/60 °C	kW	105	124	152
Nominal output 40/30 °C	kW	110	130	160
• Max min. output 80/60 °C	kW	78-105	99-124	114-152
• Max min. output 40/30 °C	kW	83-110	104-130	119-160
Heat input	kW	80-106	100-125	115-154
• Dimensions			see Dimensions	
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler 	°C	90	90 no min. limit no min. limit no min. limit	90
Safety temperature limiter setting (water side)	°C	110	110	110
Operating pressure	bar	5	5	5
Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV)	%	99.1/93.5	99.0/93.4	98.7/93.1
Boiler efficiency at 40/30 °C in full-load operation (net calorific value NCV/gross calorific value GCV)	%	104.1/98.2	104.1/98.2	103.9/98.0
 Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV) 	%	105.0/99.1	104.8/98.9	104.5/98.6
• Stand-by deficiency qB at 70 °C	Watt	500	500	500
• Combustion gas resistance, 12.5 % CO ₂ , 500 m above sea, level (tolerance +/- 20 %)	mbar	0.24	0.34	0.45
• Flow resistance boiler 1)	z-value	0.1	0.1	0.1
Water resistance at 10 K	mbar	8.9	12.4	18.8
Water resistance at 20 K	mbar	2.2	3.1	4.7
Water flow volume at 10 K	m³/h	9.4	11.1	13.7
Water flow volume at 20 K	m ³ /h	4.7	5.6	6.9
Boiler water capacity	litres	340.00	340.00	340.00
Boiler gas volume	m³	0.247	0.247	0.247
Insulation thickness boiler body	mm	80	80	80
Weight (incl. casing, burner)	kg	420	420	420
Weight of transport	kg	370	370	370
Electrical power consumption min./max.	Watt	140/360	152/550	167/550
• Standby	Watt	6	6	6
Acoustic power level incl. sound attenuation cowl	watt	Ŭ	· ·	Ü
Ambient air dependent				
- Heating noise (EN 15036 part 1) ²⁾ • Ambient air dependent	dB(A)	65	67	67
- Exhaust noise in the pipe (EN 15036 part 2) 2)	dB(A)	86	89	92
- Flue gas noise radiated from the mouth (DIN 45635 Part 47)	dB(A)	75	76	78
Condensate rate (heating oil EL) at 40/30 °C	I/h	7.8	8.7	10.8
• pH-value of the condensate		3.2	3.2	3.2
•	approx.			
Construction type		B23	B23	B23
 Flue gas system Temperature class Flue gas mass flow at nominal output 12.5 % CO₂ heating oil EL Flue gas temperature at nominal output 80/60 °C Maximum supply pressure for supply air and flue gas line Maximum draught/underpressure at flue gas outlet 	kg/h °C Pa Pa	T120 163.6 68 80 -20	T120 193.0 70 80 -20	T120 252.0 75 80 -20
Combustion chamber dimensions Ø inside x length		524 x 800	524 x 800	524 x 800
Combustion chamber differsions & inside x length Combustion chamber volume	mm m³	0.172	0.172	0.172
Compaction onambor volume	111	0.112	0.172	0.172

 $^{^{1)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

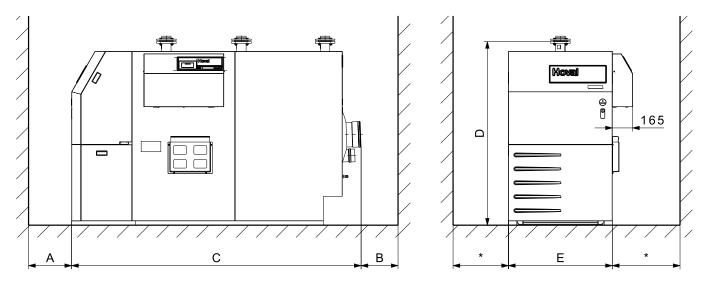
UltraOil[®] (200-300)

Туре		(200)	(250)	(300)
 Nominal output 80/60 °C Nominal output 40/30 °C Max min. output 80/60 °C Max min. output 40/30 °C Heat input 	kW kW kW kW	190 200 147-190 155-200 150-194	238 250 180-238 189-250 182-241	286 300 215-286 227-300 218-290
• Dimensions			see Dimensions	
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler Safety temperature limiter setting (water side) Operating pressure 	°C °C bar	90 110 5	90 no min. limit no min. limit no min. limit 110 5	90 110 5
	%	3	3	3
 Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV) Boiler efficiency at 40/30 °C in full-load operation 	%	98.2/92.6 103.4/97.5	99.0/93.4	98.8/93.2
(net calorific value NCV/gross calorific value GCV)		103.4/97.5	104.1/90.2	103.9/96.0
 Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV) 	%	104.0/98.1	104.9/99.0	104.6/98.7
Stand-by deficiency qB at 70 °C	Watt	520	600	600
 Combustion gas resistance, 12.5 % CO₂, 500 m above sea, level (tolerance +/- 20 %) 	mbar	0.67	0.50	0.80
 Flow resistance boiler ¹⁾ Water resistance at 10 K Water resistance at 20 K Water flow volume at 10 K Water flow volume at 20 K 	z-value mbar mbar m³/h m³/h	0.1 29.4 7.3 17.1 8.6	0.1 46.1 11.5 21.5 10.7	0.1 66.3 16.6 25.8 12.9
 Boiler water capacity Boiler gas volume Insulation thickness boiler body Weight (incl. casing, burner) Weight of transport Electrical power consumption min./max. Standby 	litres m³ mm kg kg Watt Watt	360 0.290 80 450 390 186/500 6	295 0.440 80 634 534 207/830 6	295 0.440 80 634 534 226/830 6
Acoustic power level incl. sound attenuation cowl • Ambient air dependent				
 - Heating noise (EN 15036 part 1) ²⁾ • Ambient air dependent 	dB(A)	67	74	75
- Exhaust noise in the pipe (EN 15036 part 2) ²⁾ - Flue gas noise radiated from the mouth (DIN 45635 Part 47)	dB(A) dB(A)	93 82	87 75	89 79
 Condensate rate (heating oil EL) at 40/30 °C pH-value of the condensate 	l/h approx.	13.5 3.2	16.8 3.2	20.2 3.2
Construction type		B23	B23	B23
 Flue gas system Temperature class Flue gas mass flow at nominal output 12.5 % CO₂ heating oil EL Flue gas temperature at nominal output 80/60 °C Maximum supply pressure for supply air and flue gas line Maximum draught/underpressure at flue gas outlet 	kg/h °C Pa Pa	T120 315 80 50 -20	T120 394 67 50 -20	T120 473 71 50 -20
 Combustion chamber dimensions Ø inside x length Combustion chamber volume 	mm m³	524 x 1000 0.215	624 x 1100 0.336	624 x 1100 0.336

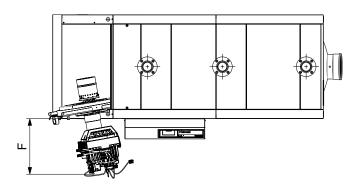
 $^{^{1)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

UltraOil® (110-200) UltraOil® (250,300)

1	Flow heating/saf	ety flow				DN 6	65/PN 6	DI	N 65/PN 6		
2	Low temperature	-				DN 6	65/PN 6	DI	N 65/PN 6		
3	High temperature	e return				DN 6	65/PN 6	DI	N 65/PN 6		
4	Flue gas outlet (plastic)				Ø 2	00/206	Q	0252/258		
5	Siphon	,				D	N 25		DN 25		
	and 2 m PVC pa	ssage				D	19x3		D19x3		
6	Cleaning apertur						0100		D100		
7	Drain .					ı	R 1"		R 1"		
8	Electrical connec	ction, optio	nally left o	r right							
9	Boiler controller,	optionally	left or righ	ıt							
10	Condensate drai	n, optional	ly left or ri	ght		F	R 3/4"		R 3/4"		
11	Base rail			•							
12	Maximum pressu	ıre limiter				R	Rp 3/4"		Rp 3/4"		
13	Safety temperature limiter					Rp 1⁄2″		Rp ½"			
14	Safety valve connection					Rp 1 ¼" Rp 1 ¼"					
15	Connection for diaphragm pressure expansion tank						Rp 1" Rp 1"				
10	Connection for diaprillagin pressure expansion tank				·ρ ·		TQ I				
		Α	В	С	D	E	F	G	Н	I	J
Ultra	Oil® (110-160)	1009	844	715	2200	243	1710	153	490	280	610
	Oil® (200)	1009	844	715	2408	238	1918	137	490	277	800
	Oil® (250,300)	1064	899	770	2706	228	2018	135	690	292	888
		K	L	М	N	0	Р	Q	R	S	
Ultra	Oil® (110-160)	680	1524	619	756	1412	1492	740	395	290	-
	Oil® (200)	690	1722	619	756	1412	1492	701	356	251	
	Oil® (250,300)	690	1820	650	797	1483	1602	710	335	230	
0.00	(200,000)	200	.020	250	. 01	00	.502	. 10	230	_30	


Space requirements

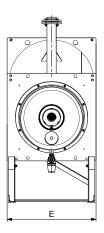
for fitting the side casing 400 mm.

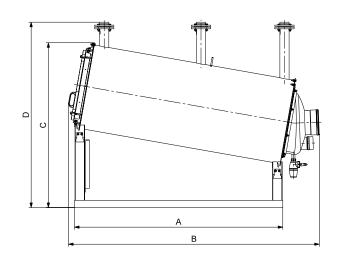

The boiler can then be pushed to a position 100 mm away from the wall.

Allow space for vibration absorber if necessary (see Accessories).

UltraOil® (110-300) (Dimensions in mm)

^{*} Important: there must be 700 mm space on the left or right of the boiler so that the boiler door can be swivelled out with the burner.

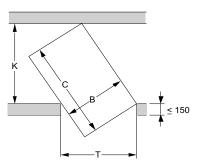



Туре	Α	В	С	D	Е	F
UltraOil® (110-160) UltraOil® (200)	560 560	360 360	2353 2545	1492 1492	845 845	450 450
UltraOil® (250,300)	700	480	2841	1602	900	550

Hoval

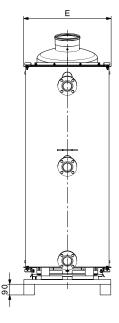
Dimensions without thermal insulation and casing

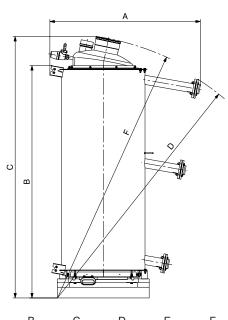
(Dimensions in mm)



	Α	В	С	D	E
UltraOil® (110-160) UltraOil® (200)	1524 1722	1882 2073	1362 1362	1533 1533	735 735
UltraOil® (250,300)	1820	2174	1434	1642	790

Required minimum width of door and corridor for bringing in the boiler


The following values are the calculated minimum values


- T Door width
- K Corridor width
- B Boiler width
- L Maximum boiler length

Vertical installation in case of space problems Dimensions without thermal insulation and casing

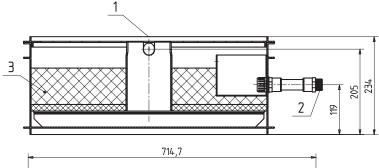
(Dimensions in mm)

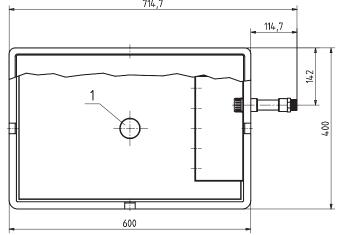
UltraOil® (200) 1264 1951 2195 2182 735 2	2027 2220 2317

Neutralisation setup for UltraOil® (110-300) (Dimensions in mm)

Neutralisation box type KB 23

Hec


- Condensate discharge into lower drainage duct
- With condensate neutralisation
- Placed under or next to the boiler


Design

- Collecting tank with neutralisation unit
- 12 kg neutralisation granulate
- Connection line from boiler (siphon) to neutralisation box, if the installation location is underneath the boiler

On-site:

- With installation next to the boiler, connection lines from boiler (siphon) to the neutralisation box
- Discharge line from the neutralisation box

- 1 Condensate inlet from the boiler
- 2 Exit R 3/4"
- 3 Condensate tank with 12 kg granulate

Neutralisation box with pump type KB 24

Use:

- Condensate discharge into higher drainage duct
- With condensate pump, delivery head 3.5 m
- With condensate neutralisation, 12 kg granulate
- Placed under or next to the boiler.

Design

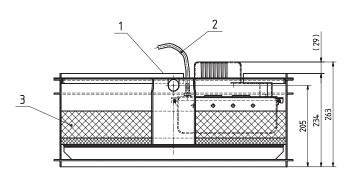
- Collecting tank with feed pump and neutralisation unit
- 12 kg neutralisation granulate
- Delivery head of the pump max. 3.5 m (2 dm³/min.)
- Silicone hose Ø 9/13 mm, length 4 m
- Electrical cable length 1.5 m with plug for connecting to boiler electrical panel if installation location is below boiler
- Plastic connection line Ø 25 mm, from boiler (siphon) to neutralisation box, if the installation location is underneath the boiler.

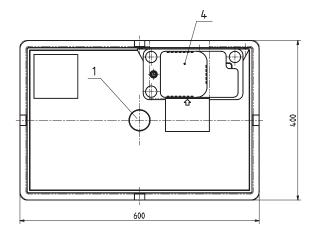
On-site:

- Discharge duct, if silicone hose too short.

For installation next to the boiler:

- Connection lines from boiler (siphon) to the neutralisation box
- Electrical connection from feed pump to electrical panel if supplied cable is too short.


Condensate box with pump type KB 22


Use:

- Condensate discharge into higher drainage duct
- With condensate pump, delivery height 3.5 m
- Placed under or next to the boiler.

Design

Design as for KB 24, but without neutralisation granulate.

- 1 Condensate inlet from the boiler
- 2 Outlet from pump, silicone hose Ø 9/13 mm, length 4 m
- 3 Condensate tank with 12 kg granulate (KB 24)
- 4 Condensate pump

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, ...) as well as the corresponding regional regulations.

The following requirements and directives must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DIN EN 12828
 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the
 heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling an replacement water heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer speci c speci cations

anufacturer speci c speci cations

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the Iling an replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the Iling an replacement water, the following conditions must be complied with:
 - For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Systems with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- If only the boiler is replaced in an existing system, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

The planning sheet "Use of frost protection agent" is available from your Hoval contact person.

Combustion air

The combustion air supply must be guaranteed. Ensure that the air intake can not be closed or blocked. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

Ambient air dependent operation:

- Minimum free cross-section for the air opening can be assumed as follows by way of simplification. Nominal heat output is the determining factor!
- A minimum free cross-section of once 150 cm² or twice 75 cm² and an additional 2 cm² for each kW boiler capacity in excess of 50 kW is required for the air opening into the outside air.

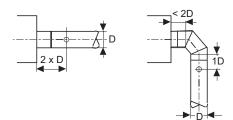
Oil burner mounting

- The standard burner plug connection must be positioned in the opposite direction to the swivelling direction of the boiler door.
- The space between the combustion pipe and the boiler door must be filled with the insulation material supplied.

Electric connection of the burner

- Mains connection 1 x 230 V, 50 Hz, 10 A
- The burner must be connected to the standard plug connection of the boiler.
- The burner cable must be shortened so that the plug-in connection has to be parted to swing out the burner.

Sound absorption


Sound absorption is possible through the following steps:

- Make boiler room walls, ceiling and floor as thick as possible, install a silencer in the intake air opening, provide carriers and brackets for the pipes with noise insulation.
- If there are living areas above or below the boiler room, install rubber vibration dampers under the base rails of the boiler.
- Connect circulating pumps to the piping network using expansion joints.
- To dampen the flame noise in the chimney, silencers can be installed in the connection tube (possibly leave space for later installation).

Flue gas system

- The flue gas system must be made by an examined and certified flue gas line.
- The flue gas line must be certified gas-tight, humidity-insensitively, corrosion and acidproof as well as for flue gas temperatures up to 120 °C.
- The flue gas system must be suitable for the operation with over-pressure.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas line is to be laid with upward gradient, so that the resulting condensate of the flue gas system flows back into the boiler so that before deriving into drains it can be neutralised.
- When using flue gas lines made of plastic a flue gas safety temperature limiter must be inserted (included in the boiler scope of delivery).

 In the connection pipe has to be integrated a closable flue gas measurement nozzle with circular inner diameter of 10-21 mm.
 The socket has to be led over the thermal insulation.

Connecting pipes

Horizontal connecting pipes must be installed with an inclination of at least 50 mm per metre of their length installed in the direction of the boiler to allow free return of condensation water towards the boiler. The whole flue gas system must be installed so that condensate can never collect at any point.

aximum flue gas pipe lengths accor ing to examples Chimney connection an flue gas pipe in chimney stack

Flue gas pipe dimensions

Boiler		Smooth- walle flue gas line	90° bends ¹⁾ flue gas supply air			
UltraOil®	Flue gas dim.	Designation DN	1 2 3 4 ²⁾ Total pipe length in m (flue gas + supply air)			
(110)	200	130 ³⁾	22	21	19	18
(110) (130) (160)	200 200 200	150 ³⁾	40 30 23	40 30 21	40 30 19	40 30 17
(110) (130) (160)	200 200 200	200 4)	50 50 50	50 50 50	50 50 50	50 50 50
(200) (250) (300)	200 250 250	250 250	38 50 50	36 50 50	34 50 50	32 - -

¹⁾ Two 45° bends should be used instead of a 90° bend

A 90° bend or a reduction is not permitted directly after the flue gas connection of the boiler. From the flue gas connection to the first bend or reduction, the flue gas pipe must be configured in the same dimension as the flue gas connection over a length of at least 0.5 m.

The vertical length of the flue gas pipe system DN 200 must not exceed 25 m due to the weight load on the support arch.

Notices

- The data contained in the table represents guide values at maximum output. An exact calculation for the flue gas line must be made on site.
- The diameters given in the dimensioning tables must not be undershot.

²⁾ If there are 4 bends or more, the delivery pressure for the supply air/flue gas line must be reduced by 30 % for the calculation and an exact design of the flue gas line is necessary.

³⁾ Flue gas pipe systems DN 130, DN 150:

⁴⁾ Flue gas pipe system DN 200:

Sound power

The sound power level is independent of local and spatial influences.

The sound **pressure** level depends on installation conditions and can, for example, be 10 to 15 dB(A) lower than the sound **power** level at a distance of 1 m.

Recommendation:

If the air inlet at the facade is near a noise sensitive place (window of bedroom, terrace etc.), we recommend to use a sound absorber at the direct combustion air inlet.

Condensate drain

- A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority.
- The condensate from the flue gas system can be discharged via the boiler. A condensate trap is no longer needed in the flue gas duct system.
- A siphon must be installed on the condensate drain of the oil-fired condensing boiler (included in the boiler scope of delivery).
- · Suitable materials for condensate drain:
 - Stoneware pipes
 - Pipes made from PVC
 - Pipes made from polyethylene (PE)
 - Pipes made from ABS or ASA
- The commercial system operator must inform the sewer operator if the exhaust gas condensate is discharged into the sewer system.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Heating system renovation notice

If an existing oil heating installation is replaced by Hoval UltraOil®, the following instructions regarding the oil tank and its refilling must be observed:

 The Hoval UltraOil® is only allowed to be operated with heating oil EL low-sulphur with sulphur content < 50 ppm (< 0.005 %).

- It is recommended to clean the oil tank before refilling it.
- A residual amount of heating oil EL in the oil tank may be mixed with heating oil EL lowsulphur, provided that the residual amount does not exceed the following values of the total content.
- Residual quantity of heating oil EL (sulphur content: 2000 ppm or 0.2 %) max. 3 % of tank volume Residual amount heating oil EL (sulphur content: 1000 ppm or 0.1 %) max. 5 % of tank volume Residual amount heating oil EL (sulphur content: 500 ppm or 0.05 %) max. 10 % of tank volume
- In order to reach the permissible mixture ratio with heating oil EL low-sulphur taking account of the residual amount of heating oil in the oil tank, a 100 % tank filling is necessary.

Oil line installation

- The Hoval UltraOil® is only allowed to be connected to 1-section oil lines. Max. suction height without intermediate pump 3.5 m, maximum line length 30 m.
- The lines must be positioned so that the boiler door can still be fully opened.
- A shut-off element must be installed before the flexible oil lines at the end of the rigid oil line (already installed in the "Oventrop filter").
- A single line fine filter with return feed must be installed before the burner (e.g. "Oventrop" type).
- The highest point on the oil line is allowed to be max. 3.5 m above the tank suction line.
- Product pipelines must be installed in such a way that no liquid can emerge independently (rise) from the container.
- If the highest point of the oil level in the oil tank is higher than the lowest point in the removal line, it is necessary to install a solenoid valve at the highest point in the oil line as close as possible to the oil tank.
- In the case of systems with several oil-fired boilers, the oil supply to the boilers must be ensured in all operating states, e.g. provide an independent connection line to the oil tank for each boiler.

One pipe oil lines

Line diameter Ø inside 6 mm, max. permissible line length in m

Suction height H			Ultra	aOil®		
in m	(110)	(130)	(160)	(200)	(250)	(300)
0	30	30	30	26	21	17
1	30	30	26	20	15	12
2	28	25	18	14	10	8

This line sizing table provides indicative values for:

Low-sulphur heating oil EL or low-sulphur mixed heating oil EL with max. 15 % FAME (ecological heating oil) content, oil temperature > 10 °C (indoor tank) up to 700 m above sea level, 1 filter, 1 valve, 6 elbows 90° (40 mbar).

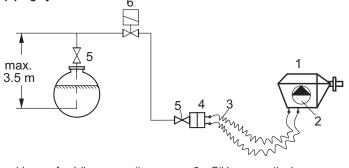
Pipe systems that are oversized can lead to operational disturbance!

For this reason, in case of boiler exchange the pipe dimensioning table must be observed!

Diaphragm pressure expansion tank

 Ideally, the diaphragm pressure expansion tank should be connected to the heating system as described in our example applications, with a removable or sealable actuation device. This means that it is not necessary to drain the entire system in order to carry out work on the diaphragm pressure expansion tank.

Safety valve


 A safety valve and an automatic air vent must be installed in the safety flow.

Systems with one return

 In systems with one return, the return must always be connected to the low-temperature return of the boiler. An air vent must be fitted on the high-temperature return.

Max. oil level lower than the lowest point

Max. oil level higher than the lowest point of the piping system

- 1 Hoval-burner for 1-line connection with return flow
- 2 Oil pump

- 3 Oil hoses on the burner
- 4 Fine filter with return feed with sintered plastic insert 50-75 μm
- 5 4 3 max. 3.5 m

of the piping system

- 5 Shut-off valve
- 6 Solenoid valve
- H = Suction height [m]

Looking for the appropriate hydraulic schematic?

Please contact your local Hoval partner.

Hoval UltraOil® (320D-600D) Oil-fired condensing boiler for ecological heating oil EL low-sulphur

Boiler

- Oil condensing boiler according to EN 303 part 1 and 2 and EN 15034. Double boiler consisting of two single boilers (UltraOil® 160, 200, 250, 300 kW)
- · For the combustion of:
 - heating oil EL sulphur-free according to ÖNORM C1109 with sulphur content
 10 ppm
 - heating oil EL low-sulphur according to DIN 51603-1 with sulphur content < 50 ppm
 - paraffinic fuels (HVO, XtL) according to DIN EN 51603-8
- Boiler made of steel with condensation design
- Components that come into contact with flue gas and condensate are made from highalloyed stainless steel Maximum flue gas condensation by heating surfaces made of aluFer® composite pipe; Flue gas side: aluminium Water side: stainless steel
- No lower delimitation of the boiler water temperature and the boiler return temperature
- · No minimal water circulation necessary
- Boiler door swivelling to the front right, swivelling to the left by conversion on the system
- Insulation at the boiler body: 80 mm mineral wool mat and glass fabric
- Casing made of steel sheet, red powder coated, delivered separately packed
- · Flue outlet at the back upwards
- Heating connections at top incl. counterflange, bolts and seals for:
 - flow
 - return high temperature
 - return low temperature
- Sound absorbing/thermal insulation hood
- Water pressure sensor:
 - Fulfils the function of a minimum and maximum pressure limiter
 - Replacement for the water shortage
- Flue gas temperature monitoring (installation on site)
- Cleaning set comprising scraper and implement holder (included in the scope of delivery)
- Each individual boiler is supplied with a Hoval TopTronic® E control

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- Service and maintenance function

Model range

UltraOil®	Max min.
	output
	40/30 °C
type	kW
(320D)	119-320
(400D)	155-400
(500D)	189-500
(600D)	227-600

- Fault message management
- Analysis function
- · Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
- bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- · RAST 5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 - 1 module expansion:
 - module expansion heating circuit or
 - module expansion heat balancing ormodule expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
- measuring module

Number of modules that can be additionally installed in the heat generator (per single boiler):

- 1 module expansion and 2 controller modules or
- 1 controller module and 2 module expansions or
- 3 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Oil automatic function device OFA

- · Control function integrated for
 - flue gas sensor for safety shut-off
 - 0-10 V output for connecting a modulating main pump (incl. ΔT control with low consumption)
 - Standard plug connection for 2-stage burner 1 x 230 V
 - Variable input for plant-specific functions (heat generator block, return sensor, info sensor etc.)
 - Variable output for plant-specific functions (thermostat function, operating message, etc.)

Further information about the TopTronic® E see "Controls"

Oil burner

- Fully automatic 2-stage pressure atomizer burner (blue burner)
- Air termination flap
- · Fan follow-on time
- Completely wired up with 7+4-pin standard plug connection 1 x 230 V
- The oil burner is checked at the factory according to factory setting ≤ 1000 m above sea level. Higher altitudes result in a power reduction of 1.2 % per 100 m

Optional

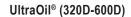
- Free-standing calorifier, see Calorifiers
- · Flue gas systems
- Installation transport set for conditions of restricted access

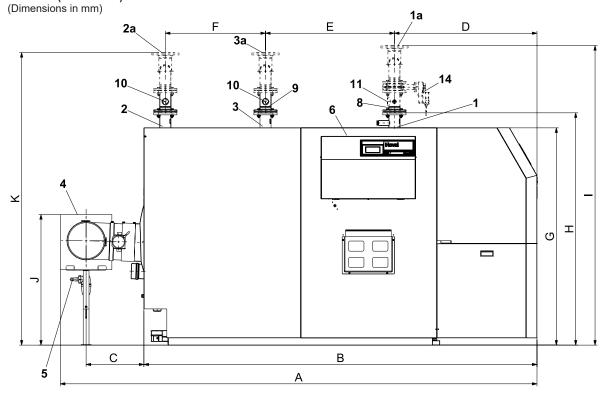
Delivery

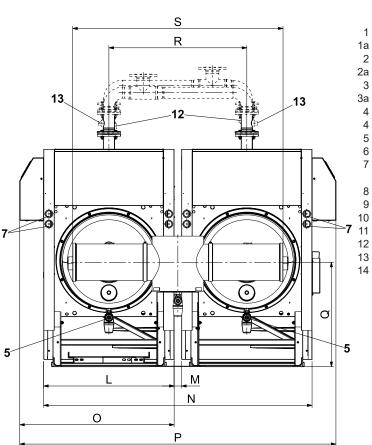
 2 boilers, casing with thermal insulation, front casing panel, oil burner and 2 TopTronic® E controls are delivered separately packed.

On site

- Installation of thermal insulation, casing, boiler control panel
- Installation of the flue gas connection line with the flue gas f lap
- Installation of the hydraulic connection set (option)


Heating armature groups and wall distributors


see "Various system components"


UltraOil® (320D-600D)					
Туре		(320D)	(400D)	(500D)	(600D)
 Nominal output 80/60 °C Nominal output 40/30 °C Max min. output 80/60 °C Max min. output 40/30 °C 	kW kW kW kW	304 320 114-304 119-320	380 400 147-380 155-400	476 500 180-476 189-500	572 600 215-572 227-600
• Heat input	kW	115-309	150-388	182-482	218-580
• Dimensions			see Dim	ensions	
 Boiler operating temperature max. Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler Safety temperature limiter setting (water side) 	°C	90	no mii	90 n. limit n. limit n. limit 110	90
Operating pressure	bar	5	5	5	5
 Boiler efficiency at 80/60 °C in full-load operation (net calorific value NCV/gross calorific value GCV) Boiler efficiency at 40/30 °C in full-load operation 	%	98.7/93.1	98.2/92.6	99.0/93.4	98.6/93.0
(net calorific value NCV/gross calorific value GCV)	%	103.9/98.0	103.4/97.5	104.1/98.2	103.9/98.0
 Boiler efficiency at 30 % partial load (EN 303) (net calorific value NCV/gross calorific value GCV) 	%	104.5/98.6	104.0/98.1	104.9/99.0	104.6/98.7
Stand-by deficiency qB at 70 °C	Watt	1000	1040	1200	1200
 Combustion gas resistance, 12.5 % CO₂, 500 m above sea, level (tolerance +/- 20 %) 	mbar	0.45	0.67	0.49	1
 Flow resistance boiler ¹⁾ Water resistance at 10 K Water flow volume at 10 K Water flow volume at 20 K 	z-value mbar mbar m³/h m³/h	0.1 75.2 18.8 27.4 13.7	0.1 117.6 29.4 34.3 17.1	0.1 183.7 45.9 42.9 21.4	0 265 66 51 26
 Boiler water capacity Boiler gas volume Insulation thickness boiler body Weight (incl. casing, burner) Weight of transport Electrical power consumption min./max. Standby 	litres m³ mm kg kg Watt Watt	680 0.347 80 840 740 233/740 6	720 0.290 80 900 780 260/1100 6	590 0.440 80 1268 1068 289/1660 6	590 0 80 1268 1068 315/1660 6
Acoustic power level incl. sound attenuation cowl					
 Ambient air dependent Heating noise (EN 15036 part 1)²⁾ Ambient air dependent 	dB(A)	72	73	79	78
- Exhaust noise in the pipe (EN 15036 part 2) ²⁾ - Flue gas noise radiated from the mouth (DIN 45635 Part 47)	dB(A) dB(A)	90	90	89 -	88 -
 Condensate rate (heating oil EL) at 40/30 °C pH-value of the condensate 	l/h approx.	21.6 3.2	27.0 3.2	20.2 3.2	20 3
Construction type		B23	B23	B23	B23
 Flue gas system Temperature class Flue gas mass flow at nominal output 12.5 % CO₂ heating oil EL Flue gas temperature at nominal output 80/60 °C Maximum supply pressure for supply air and flue gas line Maximum draught/underpressure at flue gas outlet 	kg/h °C Pa Pa	T120 504 75 40 -20	T120 730 80 25 -20	T120 784 67 25 -20	T120 945 70 25 -20
 Combustion chamber dimensions Ø inside x length Combustion chamber volume 	mm m³	524 x 800 0.173	524 x 1000 0.216	624 x 1100 0.336	624 x 1100 0

¹⁾ Flow resistance boiler in mbar = flow rate $(m^3/h)^2 x z$

²⁾ Acoustic values with nominal output of both boilers

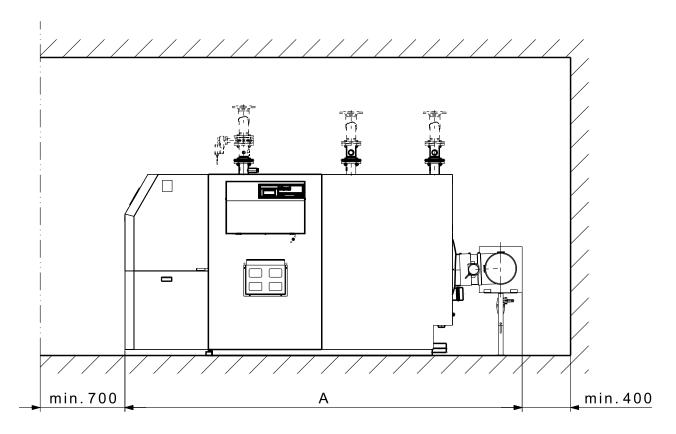
- Flow/safety flow DN 65/PN 6 Flow connection set (option) DN 80/PN 6 Low-temperature return DN 65/PN 6 2 Low-temperature return connection set (option) DN 80/PN 6 High-temperature return DN 65/PN 6 High-temperature return connection set (option) DN 80/PN 6 Ø 305/315 Flue gas outlet (320D,400D) Flue gas outlet (500D,600D) Ø 350/352 Condensate drain/siphon DN 25 Control panel Electrical connection
 - Fitting pipe flow (option) Fitting pipe return (option) Connection for diaphragm pressure expansion tank Rp 1"
- Rp 1 1/4" Rp 3/4" Safety valve connection Maximum pressure limiter
- Safety temperature limiter Rp 1/2"

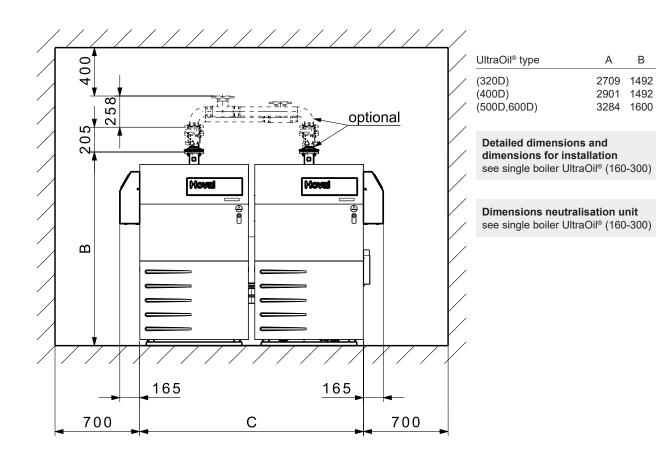
Motor shut-off flap va	lve
------------------------	-----

on the left or right hand side

UltraOil® type	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S
(320D) (400D) (500D,600D)	2901	2200 2408 2708	236	770 767 982			1412	1492	1955	889	1907 1907 2015	844		1794	1009	2123 2123 2278	709	950	1305

С


1794


1794

1849

Space requirements (Dimensions in mm)

UltraOil® (320D-600D)

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards, ...) as well as the corresponding regional regulations.

The following requirements and directives must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DIN EN 12828
 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the
 heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 "Protection of metallic materials against corrosion"
- VDE 0100 supplement 2

Water quality in heating systems Filling an replacement water heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer speci c speci cations

anufacturer speci c speci cations

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the Iling an replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the Iling an replacement water, the following conditions must be complied with:
 - For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake. (System type I according to EN 14868).
- Systems with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- If only the boiler is replaced in an existing system, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

The planning sheet "Use of frost protection agent" is available from your Hoval contact person.

Combustion air

The combustion air supply must be guaranteed. Ensure that the air intake can not be closed or blocked. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

Ambient air dependent operation:

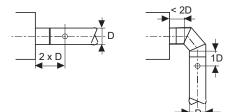
- Minimum free cross-section for the air opening can be assumed as follows by way of simplification. Nominal heat output is the determining factor!
- A minimum free cross-section of once 150 cm² or twice 75 cm² and an additional 2 cm² for each kW boiler capacity in excess of 50 kW is required for the air opening into the outside air.

Oil burner mounting

- The standard burner plug connection must be positioned in the opposite direction to the swivelling direction of the boiler door.
- The space between the combustion pipe and the boiler door must be filled with the insulation material supplied.

Electric connection of the burner

- Mains connection 1 x 230 V, 50 Hz, 10 A
- The burner must be connected to the standard plug connection of the boiler.
- The burner cable must be shortened so that the plug-in connection has to be parted to swing out the burner.


Sound absorption

Sound absorption is possible through the following steps:

- Make boiler room walls, ceiling and floor as thick as possible, install a silencer in the intake air opening, provide carriers and brackets for the pipes with noise insulation.
- If there are living areas above or below the boiler room, install rubber vibration dampers under the base rails of the boiler.
- Connect circulating pumps to the piping network using expansion joints.
- To dampen the flame noise in the chimney, silencers can be installed in the connection tube (possibly leave space for later installation).

Flue gas system

- The flue gas system must be made by an examined and certified flue gas line.
- The flue gas line must be certified gas-tight, humidity-insensitively, corrosion and acidproof as well as for flue gas temperatures up to 120 °C.
- The flue gas system must be suitable for the operation with over-pressure.
- The flue gas lines must be secured against unwanted loosening of the plug connections.
- The flue gas line is to be laid with upward gradient, so that the resulting condensate of the flue gas system flows back into the boiler so that before deriving into drains it can be neutralised.
- When using flue gas lines made of plastic a flue gas safety temperature limiter must be inserted (included in the boiler scope of delivery).
- In the connection pipe has to be integrated a closable flue gas measurement nozzle with circular inner diameter of 10-21 mm.
 The socket has to be led over the thermal insulation.

Flue gas pipe dimensions

Table with bases for calculation

- Calculation based on max. 1000 m above sea level.
- The first 2 m of the flue gas line must be configured with the same dimension as the flue gas connector, after which the size of the flue gas system can be selected according to the table below.

Connecting pipes

Horizontal connecting pipes must be installed with an inclination of at least 50 mm per metre of their length installed in the direction of the boiler to allow free return of condensation water towards the boiler. The whole flue gas system must be installed so that condensate can never collect at any point.

Boiler		Smooth-walled flue gas line	90° bends ¹) flue gas supply air				
UltraOil®	Flue gas dim.	Designation	Total pipe ler	ngth in m (flue gas	+ supply air)		
type	int.	DN	1	2	3		
(320D)	305	300	50	50	50		
(400D)	305	300	50	50	50		
(500D)	350	350	50	50	50		
(600D)	350	350	50	50	50		

¹⁾ Two 45° bends should be used instead of a 90° bend

Notice: The data contained in the table "flue gas line dimensions" represents guide values.

An exact calculation for the flue gas line must be made on site.

With total pipe lengths exceeding 50 m, a separate calculation is necessary.

Sound power

The sound power level is independent of local and spatial influences.

The sound **pressure** level depends on installation conditions and can, for example, be 10 to 15 dB(A) lower than the sound **power** level at a distance of 1 m.

Recommendation:

If the air inlet at the facade is near a noise sensitive place (window of bedroom, terrace etc.), we recommend to use a sound absorber at the direct combustion air inlet.

Condensate drain

- A permit for discharge of the flue gas condensate into the sewage system must be obtained from the relevant authority.
- The condensate from the flue gas system can be discharged via the boiler. A condensate trap is no longer needed in the flue gas duct system.
- A siphon must be installed on the condensate drain of the oil-fired condensing boiler (included in the boiler scope of delivery).
- · Suitable materials for condensate drain:
 - Stoneware pipes
 - Pipes made from PVC
 - Pipes made from polyethylene (PE)
- Pipes made from ABS or ASA
- The commercial system operator must inform the sewer operator if the exhaust gas condensate is discharged into the sewer system.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Heating system renovation notice

If an existing oil heating installation is replaced by Hoval UltraOil®, the following instructions regarding the oil tank and its refilling must be observed:

- The Hoval UltraOil® is only allowed to be operated with heating oil EL low-sulphur with sulphur content < 50 ppm (< 0.005 %).
- It is recommended to clean the oil tank before refilling it.

- A residual amount of heating oil EL in the oil tank may be mixed with heating oil EL lowsulphur, provided that the residual amount does not exceed the following values of the total content.
- Residual quantity of heating oil EL (sulphur content: 2000 ppm or 0.2 %) max. 3 % of tank volume Residual amount heating oil EL (sulphur content: 1000 ppm or 0.1 %) max. 5 % of tank volume Residual amount heating oil EL (sulphur content: 500 ppm or 0.05 %) max. 10 % of tank volume
- In order to reach the permissible mixture ratio with heating oil EL low-sulphur taking account of the residual amount of heating oil in the oil tank, a 100 % tank filling is necessary.

Oil line installation

- The Hoval UltraOil[®] is only allowed to be connected to 1-section oil lines. Max. suction height without intermediate pump 3.5 m, maximum line length 30 m.
- The lines must be positioned so that the boiler door can still be fully opened.
- A shut-off element must be installed before the flexible oil lines at the end of the rigid oil line (already installed in the "Oventrop filter").
- A single line fine filter with return feed must be installed before the burner (e.g. "Oventrop" type).
- The highest point on the oil line is allowed to be max. 3.5 m above the tank suction line.
- Product pipelines must be installed in such a way that no liquid can emerge independently (rise) from the container.
- If the highest point of the oil level in the oil tank is higher than the lowest point in the removal line, it is necessary to install a solenoid valve at the highest point in the oil line as close as possible to the oil tank.
- In the case of systems with several oil-fired boilers, the oil supply to the boilers must be ensured in all operating states, e.g. provide an independent connection line to the oil tank for each boiler.

One pipe oil lines

Line diameter Ø inside 6 mm, max. permissible line length in m

Suction			Ultra	aOil®		
height H	(110)	(130)	(160)	(200)	(250)	(300)
in m						
0	30	30	30	26	21	17
1	30	30	26	20	15	12
2	28	25	18	14	10	8

This line sizing table provides indicative values for:

Low-sulphur heating oil EL or low-sulphur mixed heating oil EL with max. 15 % FAME (ecological heating oil) content, oil temperature > 10 °C (indoor tank) up to 700 m above sea level, 1 filter, 1 valve, 6 elbows 90° (40 mbar).

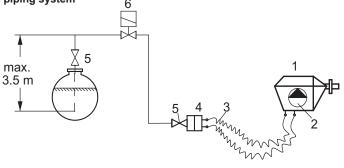
Pipe systems that are oversized can lead to operational disturbance!

For this reason, in case of boiler exchange the pipe dimensioning table must be observed!

Diaphragm pressure expansion tank

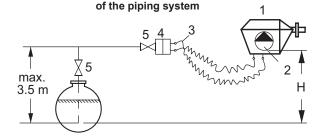
 Ideally, the diaphragm pressure expansion tank should be connected to the heating system as described in our example applications, with a removable or sealable actuation device. This means that it is not necessary to drain the entire system in order to carry out work on the diaphragm pressure expansion tank.

Safety valve


 A safety valve and an automatic air vent must be installed in the safety flow.

Systems with one return

 In systems with one return, the return must always be connected to the low-temperature return of the boiler. An air vent must be fitted on the high-temperature return.


Max. oil level lower than the lowest point

Max. oil level higher than the lowest point of the piping system

- Hoval-burner for 1-line connection with return flow
- 2 Oil pump

- 3 Oil hoses on the burner
- 4 Fine filter with return feed with nickel strainer insert 100-150 μm

- 5 Shut-off valve
- 6 Solenoid valve
- H = Suction height [m]

Looking for the appropriate hydraulic schematic?

Please contact your local Hoval partner.

High Efficiency Boilers

High fire efficiency and low Nox emissions

Hoval's Max-3 plus boiler is a powerful and efficient solution for medium to large commercial buildings, industrial applications, and district heating networks. With a thermal output range of 420–2700kW, this three-pass boiler delivers outstanding performance while keeping operating costs low. The advanced design maximizes heat transfer and ensures a full-load boiler efficiency of over 95%, making it an economical and environmentally friendly choice for heating, hot water generation, and process heat.

Designed for use with gas, oil, or dual-fuel burners, the Max-3 plus offers versatility and compliance with Low NOx regulations. The dimpled tubes and additional retarders enhance heat exchange efficiency, while the robust construction supports maximum operating temperatures of 105°C and working pressures of up to 6 bar. Whether for new-build projects or system upgrades, this boiler is engineered for durability, reliability, and seamless integration with modern heating controls.

Ideal for office buildings, commercial and industrial facilities, and local heating networks, the Max-3 plus provides a future-proof heating solution. Its combination of high efficiency, reduced emissions, and flexible fuel compatibility makes it an excellent investment for businesses looking to optimise energy use while meeting sustainability goals.

298 265

Hoval Max-3 Oil/gas boiler

Boiler

- 3-pass steel boiler according to EN 303 part 1 and 2 and EN 304 for firing of Diesel oil, oil L and gas.
- Max-3 (420-1250) complies with the Pressure Equipment Directive 2014/68/CE
- Boiler completely welded
- For LowNOx burner with intern flue gas recirculation
- Insulation at the boiler body 80 mm mineral wool mat
- Boiler completely clad with steel plate, red powder coated
- Flue gas outlet to the rear
- Heating flow connection to the top, heating return connections to the rear, incl. counter flanges, screws and seals

Optional

- Boiler control panel with boiler controller and heating control in various versions
 - Boiler controller
 - with TopTronic® E control
 - with thermostat T 2.2
 - with thermostat T 0.2
- Free-standing calorifier see Calorifiers
- · Boiler door swivels to the left

Delivery

 Boiler, thermal insulation and casing delivered separately packed

On site

· Mounting of insulation and casing

Model rang	je
Max-3	Max min.
	output
type	kW
(420)	200-500
(530)	220-610
(620)	240-720
(750)	280-870
(1000)	350-1150
(1250)	480-1350
(1500)	640-1750
(1800)	750-2150
(2200)	920-2500

1030-3000

(2700)

266 299

Boiler controller with TopTronic® E/E13.4 control

· Maximum operating temperature 90 °C

TopTronic® E controller

Control panel

- · Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp

$\textit{TopTronic}^{\text{\tiny{\$}}} \textit{E control module}$

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management
- · Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

The supplementary plug set must be ordered in order to use expanded controller functions.

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:
- module expansion heating circuit or
- module expansion heat balancing or
- module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the electrical box:

- 1 module expansion and 2 controller modules or
- 1 controller module and
- 2 module expansions or
- 3 controller modules

Notice

Max. 1 module expansion can be connected to the basic module heat generator TTF-WF7I

Further information about the TopTronic® E see "Controls"

Oil automatic function device OFA

- Control function integrated for
- flue gas sensor for safety shut-off
- 0-10 V output for connecting a modulating main pump (incl. ΔT control with low consumption)
- Standard plug connection for 2-stage burner 1 x 230 V
- Variable input for plant-specific functions (heat generator block, return sensor, info sensor etc.)
- Variable output for plant-specific functions (thermostat function, operating message, etc.)

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Boiler controller with TopTronic® E/E13.5 control

- Maximum operating temperature 105 °C
- Configuration as TopTronic® E/E13.4 but: safety temperature limiter 120 °C

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Control panel with thermostat T 2.2

- · Maximum operating temperature 90 °C
- For systems without TopTronic® E control
- For direct 2-stage burner control, requirement starting from external calorifier or heater instruction is possible.
- Main switch "I/O"
- · Safety temperature limiter 110 °C
- · Selector switch burner load
- Switch summer/winter
- 3 boiler temperature regulators 30-90 °C
- temperature regulator for base load heating
- temperature regulator for full load heating
- temperature regulator for calorifier
- · Boiler and burner breakdown lamp
- Plug connection for burner (with cable and plug)

Optional

- 2 running time meters integrated
- 2 burner running time meters and pulse counters integrated
- · Flue gas thermometer, 4.5 m capillary tube

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Control panel with thermostat T 0.2

- Maximum operating temperature 105 °C
- For external control
- For systems without TopTronic® E control
- For special control function
- · Main switch "I/O"
- Safety temperature limiter 120 °C
- 3 boiler temperature regulators 50 ... 105 °C
- temperature regulator for base load heating
- temperature regulator for full load heatingtemperature regulator for calorifier
- without burner plug connection

Optional

- 2 running time meters integrated
- 2 burner running time meters and pulse counters integrated
- Flue gas thermometer, 4.5 m capillary tube
- Safety temperature limiter 130 °C

Delivery

Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Oil/gas boiler

Permission Boiler
CE product ID No. CE-0085BL0015
according to Directive on appliances burning
gaseous fuels 90/396/EG

Pressure Equipment Directive 2014/68/CE

Hoval Max-3 (420-2700)

3-pass boiler made of steel for oil/gas LowNOx firing, without control panel. For operating temperature up to 105 °C

Execution: complete delivery Boiler, thermal insulation and casing delivered separately packed.

Max-3	Max min. output	Operating pressure
type	kW	bar
(420)	200-500	6
(530)	220-610	6
(620)	240-720	6
(750)	280-870	6
(1000)	350-1150	6
(1250)	480-1350	6
(1500)	640-1750	6
(1800)	750-2150	6
(2200)	920-2500	6
(2700)	1030-3000	6

Part No.

Max-3 (420-1250)

Туре		(420)	(530)	(620)	(750)	(1000)	(1250)
 Nominal output at 80/60 °C Max min. output (Heating oil EL, variant 1 and natural gas H, variant 1) 	kW kW	500 320-500	610 350-610	720 450-720	870 520-870	1150 680-1150	1350 850-1350
Max min. output (natural gas H, variant 2)Burner input max.	kW kW	200-500 539	220-610 662	240-720 781	280-870 944	350-1150 1247	480-1350 1459
Dimensions				see Dim	nensions		
 Boiler operating temperature max. ¹⁾ Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler 	°C	90	see ta see ta	90 ble operating ble operating ble operating	conditions (below) below)	90
Safety temperature limiter setting (water side) 2)		110	110	110	110	110	110
 Operating pressure Boiler efficiency at 80/60 °C in full-load operation (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	bar %	6 92.7/87.5	6 92.4/87.2	6 92.4/87.2	6 92.5/87.3	6 92.5/87.3	6 92.5/87.3
 Boiler efficiency at 30 % partial load (EN 303) (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	%	95.2/89.8	95.3/89.9	94.9/89.5	95.2/89.8	95.3/89.9	95.2/89.8
 Nominal efficiency at 75/60 °C (DIN 4702-8) (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	%	94.8/89.5	94.7/89.4	94.3/89.0	94.8/89.4	94.9/89.5	94.8/89.4
Stand-by loss qB at 70 °C	Watt	1000	1035	1120	1180	1250	1380
\bullet Flue gas resistance at nominal output 180 °C flue gas temperature, 12.5 % $\rm CO_2$, 500 m over sea level (tolerance ± 20 %)	mbar	4.9	5.7	5.2	6.5	7.4	8.0
 Flue gas mass flow at nominal output 12.5 % CO₂ heating oil 	kg/h	850	1037	1224	1479	1955	2295
 Flow resistance boiler ³⁾ Water flow resistance at 10 K Water flow resistance at 20 K Water flow volume at 10 K 	z-value mbar mbar m³/h	0.022 40.4 10.1 42.8	0.022 60.1 15.1 52.2	0.008 30.5 7.6 61.7	0.008 44.5 11.1 74.5	0.003 29.1 7.3 98.5	0.003 40.2 10 115.7
Water flow volume at 20 K	m ³ /h	21.4	26.1	30.8	37.2	49.2	57.9
 Boiler water content Boiler gas volume Insulation thickness boiler body Weight (incl. casing) Weight (without casing) 	litres m³ mm kg kg	552 0.583 80 1309 1186	520 0.602 80 1327 1204	969 0.846 80 1752 1598	938 0.872 80 1808 1654	1528 1.35 80 2500 2360	1478 1.39 80 2600 2460
Maximum draught/underpressure at flue gas outlet	Pa	-50	-50	-50	-50	-50	-50
 Combustion chamber dimension Ø inside x length Combustion chamber volume 	mm m³	606x1624 0.466	606x1624 0.466	684x1899 0.669	684x1899 0.669	782x2182 1.047	782x2182 1.047

¹⁾Limited by the boiler controller E13.4 TopTronic[®] E and T 2.2 to 90 °C or by E13.5 TopTronic[®] E and T 0.2 to 105 °C.

Possible operating conditions:

Fuel	Heating	•	Natural gas H, Id	Heating oil L		
		Variant 1	Variant 2	Variant 1	Variant 2	
Min. flue gas temperature	°C	130	110	130	100	130
Min. boiler temperature	°C	60	65	65	75	65
Min. return temperature	°C	50	55	55	65	55
Return temperature control		yes	yes	yes	yes	yes

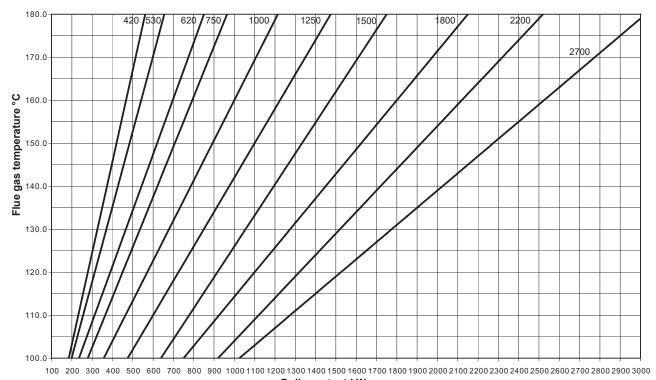
²⁾ Max. safety temperature for boiler controller E13.4 TopTronic[®] E and T 2.2: 110 °C or E13.5 TopTronic[®] E and T 0.2: 120 °C.

 $^{^{3)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

Max-3 (1500-2700)

Туре		(1500)	(1800)	(2200)	(2700)
 Nominal output at 80/60 °C Max min. output (Heating oil EL, variant 1 and natural gas H, variant 1) 	kW kW	1750 1050-1750	2150 1250-2150	2500 1500-2500	3000 1780-3000
Max min. output (natural gas H, variant 2)Burner input max.	kW kW	640-1750 1894	750-2150 2324	920-2500 2702	1030-3000 3243
Dimensions			see Dim	ensions	
 Boiler operating temperature max. ¹⁾ Boiler operating temperature min. Return flow temperature min. Flue gas temperature min. at the boiler 	°C	90	90 see table operating see table operating see table operating	conditions (below)	90
• Safety temperature limiter setting (water side) ²⁾	°C	110	110	110	110
 Operating pressure Boiler efficiency at 80/60 °C in full-load operation (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	bar %	6 92.4/87.2	6 92.5/87.3	6 92.5/87.3	6 92.5/87.3
 Boiler efficiency at 30 % partial load (EN 303) (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	%	95.2/89.8	95.3/89.2	95.2/89.2	95.2/89.2
 Nominal efficiency at 75/60 °C (DIN 4702-8) (related to net calorific value NCV/gross calorific value GCV, heating oil EL) 	%	94.8/89.4	94.9/89.5	94.9/89.5	95/89.5
Stand-by loss qB at 70 °C	Watt	1850	1950	2100	2300
• Flue gas resistance at nominal output 180 °C flue gas temperature, 12.5 % $\rm CO_2$, 500 m over sea level (tolerance \pm 20 %)	mbar	7.0	8.8	9.1	8.0
\bullet Flue gas mass flow at nominal output 12.5 $\%~\mathrm{CO}_2$ heating oil	kg/h	3031	3723	4329	5195
 Flow resistance boiler ³⁾ Water flow resistance at 10 K Water flow resistance at 20 K Water flow volume at 10 K Water flow volume at 20 K 	z-value mbar mbar m³/h m³/h	0.022 45.0 11.3 150 75	0.022 67.9 17 184.3 92.1	0.002 91.8 23 214.3 107.1	0.001 132.2 33.1 257.1 128.6
 Boiler water content Boiler gas volume Insulation thickness boiler body Weight (incl. casing) Weight (without casing) 	litres m³ mm kg kg	2343 1.956 80 3700 3400	2750 2.51 80 4900 4600	3050 2.761 80 5170 4800	3550 3.037 80 5750 5350
Maximum draught/underpressure at flue gas outlet	Pa	-50	-50	- 50	-50
 Combustion chamber dimension Ø inside x length Combustion chamber volume 	mm m³	880x2417 1.58	976x2605 2.07	976x2905 2.3	976x3233 2.41

 $^{^{1)}}$ Limited by the boiler controller E13.4 TopTronic 8 E and T 2.2 to 90 $^{\circ}$ C or by E13.5 TopTronic 8 E and T 0.2 to 105 $^{\circ}$ C.

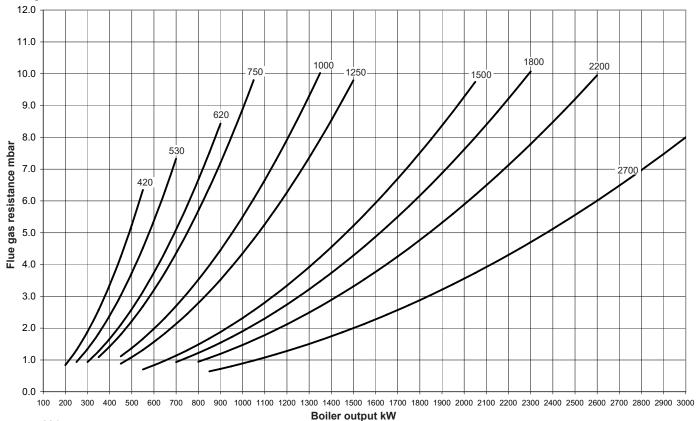

Possible operating conditions:

Fuel		Heating	g oil EL Variant 2	Natural gas H, I	ow-sulphur heating oil EL	Heating oil L
		variant i	variant 2	variant i	variant 2	
Min. flue gas temperature	°C	130	110	130	100	130
Min. boiler temperature	°C	60	65	65	75	65
Min. return temperature	°C	50	55	55	65	55
Return temperature control		yes	yes	yes	yes	yes

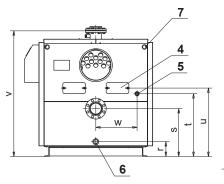
²⁾ Max. safety temperature for boiler controller E13.4 TopTronic[®] E and T 2.2: 110 °C or E13.5 TopTronic[®] E and T 0.2: 120 °C.

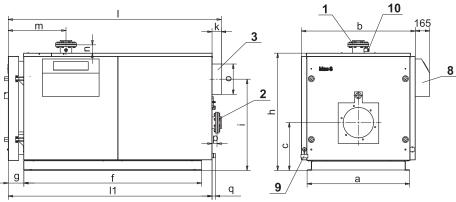
 $^{^{3)}}$ Flow resistance boiler in mbar = flow rate $(m^3/h)^2$ x z

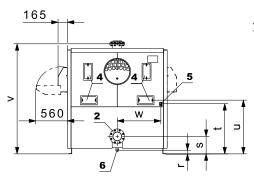
Flue gas output diagram

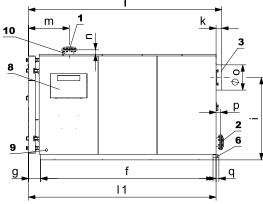

Boiler output kW

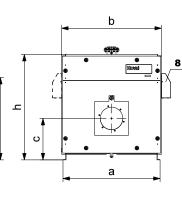
kW = boiler output


°C = flue gas temperature on a clean surface, flow temperature 80 °C, return temperature 60 °C (in accordance with DIN 4702). Operation with heating oil EL, natural gas
 λ = 1.22 with max. burner output (CO₂ heating oil EL = 12.5 %, CO₂ natural gas = 9.8 %)


- A reduction of the boiler water temperature to 10 K causes a reduction of the flue gas temperature of approx. 6-8 K.
- A modification of the CO₂ concentration of + 1 % causes a modification of the flue gas temperature of approx. – 8 K.
- A modification of the CO₂ concentration of
 1 % causes a modification of the flue gas temperature of approx. + 8 K.


Max-3 (420-1250) (Dimensions in mm)



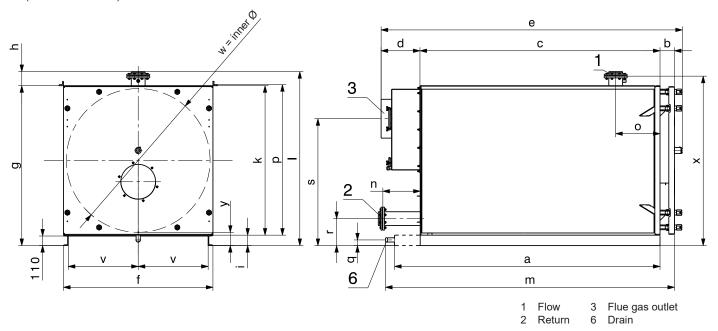


Max-3 (1500-2700)

(Dimensions in mm)

- DN 100, PN 6 Return (420,530) (620,750)DN 125, PN 6 (1000,1250) DN 150, PN 6 (1500-2200) DN 150, PN 6 (2700) DN 200, PN 6
- Flue gas collector cleaning opening R 1" Drain R 11/2"
- Cable routing 7
- 8 Control panel
- Electrical connection
- Bushing Rp 3/4" with immersion sleeve for boiler temperature sensor

1	Flow	(420,530)	DN 100, PN 6
		(620,750)	DN 125, PN 6
		(1000, 1250)	DN 150, PN 6
		(1500-2200)	DN 150, PN 6
		(2700)	DN 200, PN 6


3 Flue gas outlet Cleaning opening

Max-3 type	а	b	С	f	g	h	i	k	I	I 1	m	n	Øо	р	q	r
(420,530)	1060	1190	515	1770	181	1230	950	104	2178	2074	641	100	299	54	34	175
(620,750)	1180	1310	550	2045	181	1350	1050	105	2452	2347	666	95	349	55	35	170
(1000,1250)	1370	1500	635	2330	181	1550	1250	107	2739	2632	681	111	349	77	37	175
(1500)	1560	1610	665	2685	212	1710	1350	103	3040	2940	722	80	447	83	34	65
(1800)	1720	1770	735	3055	214	1870	1460	103	3424	3320	724	80	447	83	52	65
(2200)	1720	1770	735	3355	214	1870	1460	101	3724	3625	724	80	447	81	50	65
(2700)	1750	1800	755	3700	212	1900	1410	82	4032	3950	722	80	647	82	51	65

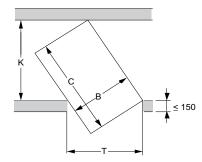
Max-3						
type	S	t	u	٧	W	X
(420,530)	350	595	660	1330	450	-
(620,750)	550	722	786	1445	475	-
(1000,1250)	415	620	685	1660	590	-
(1500)	310	777	842	1790	695	1850
(1800)	310	890	952	1950	773	2040
(2200)	310	890	952	1950	773	2340
(2700)	370	917	982	1980	790	2670

Dimensions without insulation and casing Boiler incl. hinged flange, connector and flue gas collector. (Dimensions in mm)

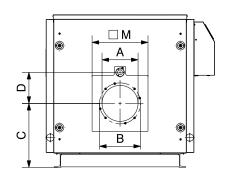
Max-3 type	a 1)	b	С	d	е	f	g	h	i	k	ı	m	n	0	р
(420,530)	1920	150	1770	277	2222	1060	1180	196	120	1060	1376	2077	175	460	1072
(620,750)	2195	150	2045	228	2498	1180	1300	196	120	1180	1496	2353	173	485	1192
, ,															
(1000,1250)	2480	150	2330	228	2783	1370	1500	187	120	1380	1660	2638	198	500	1392
(1500)	2685	164	2568	260	3078	1560	1680	162	120	1560	1842	2923	240	510	-
(1800)	3055	166	2760	450	3467	1720	1840	162	120	1720	2002	3325	430	510	-
(2200)	3355	166	3060	450	3767	1720	1840	162	120	1720	2002	3625	430	510	-
(2700)	3700	164	3390	430	4075	1750	1870	169	120	1750	2039	3953	430	510	-

Max-3 type	q	r	s	V	W	х	у
(420,530)	175	350	950	475	990	-	-
(620,750)	170	550	1050	535	1110	-	-
(1000,1250)	175	415	1250	630	1298	-	-
(1500)	65	310	1350	725	1494	1790	153
(1800)	65	310	1460	805	1654	1950	153
(2200)	65	310	1460	805	1654	1950	153
(2700)	65	370	1410	820	1684	1980	153

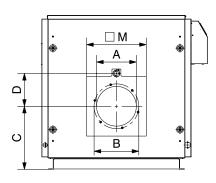
¹⁾ Max-3 (1500-2700): socket protrudes


Required min. width of door and corridor to bring in the boiler

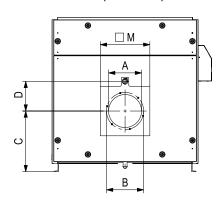
The stated measurements are minimal dimensions

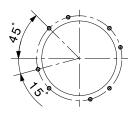

В Κ

- Door width
- Corridor width
- Boiler width
- Max. boiler length

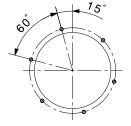


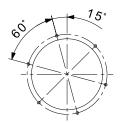
Furnace dimensions


Max-3 (420,530)

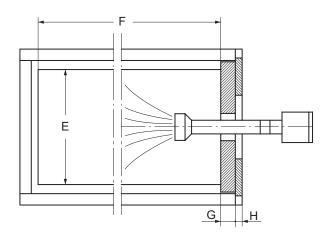


Max-3 (620-1250)

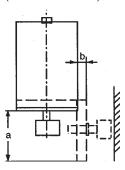

Max-3 (1500-2700)


Screw joint flange Max-3 (420,530)

4 x M12 (45°) 4 x M12 (15°)



Screw joint flange Max-3 (620,750) 6 x M12 (15°)



Screw joint flange Max-3 (1500-2700) 6 x M16 (15°)

Swinging out of boiler doorBoiler door is swivelling to the right or left (Dimensions in mm)

Dimensions (Dimensions in mm)

Dimensions	
Max-3	
уре	

Max-3									
type	Α	В	С	D	Е	F	G	Н	М
(420,530)	290	330	515	250	606	1624	163	30	450
(620,750)	350	400	550	310	684	1899	163	30	600
(1000,1250)	400	450	635	330	782	2182	163	30	600
(1500)	400	450	665	360	880	2417	170	30	600
(1800)	400	450	735	360	976	2605	170	30	600
(2200)	400	450	735	360	976	2905	170	30	600
(2700)	400	450	755	360	976	3233	170	30	600

Max-3 type	а	b
(420,530)	1060	150
(620,750)	1180	150
(1000,1250)	1370	150
(1500)	1520	175
(1800,2200)	1680	175
(2700)	1700	175

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards etc.) as well as the corresponding regional regulations.

The following requirements and directives must be complied with:

- Hoval technical information and installation instructions
- Hydraulic and technical control regulations of Hoval
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 Protection of metallic materials against corrosion
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manufacturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

 In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm. In the case of softening the filling and replacement water, the following conditions must be complied with:

The quality of the heating water must be checked and documented periodically:

- For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.
- For an installed heat output above 1000 kW, an check of the heating water is required twice a year.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake (system type I according to EN 14868).
- Systems with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- If only the boiler is replaced in an existing system, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

The planning sheet "Use of frost protection agent" is available from your Hoval contact person.

Combustion air supply

The combustion air supply must be warranted. The air opening must not be lockable. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

Room air dependent operation:

- Minimum free cross-section for the air opening can be assumed as follows by way of simplification. Nominal heat output is the determining factor!
- A minimum free cross-section of once 150 cm² or twice 75 cm² and an additional 2 cm² for each kW boiler capacity in excess of 50 kW is required for the air opening into the outside air.

Burner installation

- If the weight of the burner (including attachments) of gas and dual-fuel burners is more
 than 90 kg and the distance of the centre
 of gravity of the burner to the boiler door is
 greater than 60 cm, support the burner casing weight directly with a strut to the boiler
 room floor.
- Depending on the size of the burner flange, an intermediate flange may be required to attach the burner. The intermediate flange including screws and seal must be supplied by the burner company.
- The lines must be positioned so that the boiler door can still be fully opened.
- To allow the boiler door to be swung out 90° to the left or right, the connections must be flexible and routed to the burner in a sufficiently large loop.
- In systems with ThermoCondensor, the burner must additionally absorb the resistance of the heat exchanger.

The space between the burner pipe and the hinged flange is to be insulated. A line must be routed from the burner to the sight glass to carry cooling air, in order to cool the boiler sight glass and keep it clean (delivery by the burner company).

Electric connection of the burner

- · Control voltage 1 x 230 V
- Burner motor 1 x 230 V / 3 x 400 V.
- The burner must be connected to the burner connection plug of the boiler.
- For safety reasons the electrical cable of the burner must be that short that the plug must be removed when swivelling boiler door.

Sound absorbing

Sound absorption is possible through the following steps:

- Heating room walls, ceiling and floor should be very solidly built, a sound insulation should be mounted into the air inlet. Pipe holders and support should be protected by means of anti-vibration sleeves.
- · Install sound attenuation cowl for burner.
- If living rooms are located above or under the boiler room, vibration absorbers have to be mounted to the boiler base. Pipes and flue gas tube must be connected flexibly with compensators.
- Connect circulating pumps to the piping network using expansion joints.
- For damping of flame noise it is possible to install a silencer into the flue gas tube (space should be foreseen for later installation).

Measures for sound reduction

Make sure right from the planning phase that bedrooms are not situated in the immediate vicinity of the sound source (heating room, chimney).

A reduction of the radiated burner air sound level in the heating room (reduction of the burner noises) of up to approx. 12 dB can be achieved encapsulating the burner (sound attenuation cowl).

A significant part of the noise development in the combustion chamber and in the secondary heating surfaces is radiated as airborne noise via the flue gas line.

In addition, depending on dimensioning of the chimney and intersection, resonance effects caused by the vibration of the combustion noises (amplification) can occur.

These noises can be reduced on the one hand by measures on the burner side, such as modification of the flame geometry, the atomisation characteristic or the fuel throughput.

On the other hand, flue gas silencers achieve an important noise reduction.

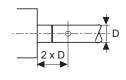
These silencers must usually be adapted to low frequencies of 60-250 Hz.

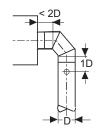
Flue gas silencers work based on the principle of sound absorption.

The kinetic energy of the flue gases is consumed due to friction, which means a draughting requirement increase in the flue gas line is necessary. This must be taken into account when dimensioning the burner.

The connection piece from the boiler to the flue gas silencer must be gas-tight as the draught and pressure zero points lie behind the flue gas silencer.

The space required of approx. 1 m for retrofitting of a flue gas silencer should be provided during planning.


Note also that secondary air devices are installed only behind a flue gas silencer.


Installation instructions

Please observe the installation instructions supplied with every boiler.

Chimney/flue gas system Flue gas line

 The flue gas tube between boiler and chimney must be connected with an angle 30-45° to the chimney.

- If the flue gas tube is longer than 1 m, it must be insulated.
- The flue gas tube must be designed that no condensate water can get into the boiler.
- A closeable flue gas measuring socket with an inner diameter of 10-21 mm must be foreseen. The socket has to be led over the thermal insulation.

Chimney

- The flue gas system must be humidityinsensitive and acid-proof and admitted for flue gas temperatures up to > 160 °C.
- For existing chimney installation the restoration must be carried out according to the instructions of the chimney constructor.
- Calculation of the profile of the chimney according to DIN 4705.
- It is recommendable to use a secondary air valve for chimney draft limiting.

Flue gas temperature and power ranges

In order to achieve a good combustion quality (optimum flame burnout), the outputs must not be less than the specified minimum values. For new systems, acid-resistant chimneys must be provided or the flue gas temperature must be set correspondingly higher (min. 160 °C).

The minimum flue gas temperature must be coordinated with the chimney conditions, otherwise the formation of sulphuric acid can lead to soot buildup in the chimney.

Diaphragm pressure expansion tank

 Ideally, the diaphragm pressure expansion tank should be connected to the heating system as described in our example applications, with a removable or sealable actuation device. This means that it is not necessary to drain the entire system in order to carry out work on the diaphragm pressure expansion tank.

Safety valve

 A safety valve and an automatic air vent must be installed in the safety flow.

Hoval Max-3 plus Oil/gas boiler

Boiler

- High-efficiency 3-pass boiler according to EN 14394 for firing of heating oil EL and gas
- Max-3 plus (420-2700) complies with the Pressure Equipment Directive 2014/68/CE.
- · Boiler completely welded
- For LowNOx burner with intern flue gas recirculation
- Insulation at the boiler body 80 mm mineral wool mat
- Boiler completely clad with steel plate, red powder coated
- · Flue gas outlet to the rear
- Heating flow connection to the top, heating return connections to the rear, incl. counter flanges, screws and seals

Optional

- Boiler control panel with boiler controller and heating control in various versions
 - Boiler controller
 - with TopTronic® E control
 - with thermostat T 2.2
 - with thermostat T 0.2
- · Free-standing calorifier see Calorifiers
- Boiler door swivels to the left.

Delivery

Boiler, thermal insulation and casing delivered separately packed

On site

Mounting of insulation and casing

Model rang	е
Max-3 plus	Max min.
	output
type	kW
(420)	200-420
(530)	220-530
(620)	240-620
(750)	280-750
(1000)	350-1000
(1250)	480-1250
(1500)	650-1500

750-1800

920-2200

1030-2700

(1800)

(2200)

(2700)

Boiler controller with TopTronic® E/E13.4 control

Maximum operating temperature 90 °C

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

TopTronic® E basic module heat generator TTE-WEZ

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water charging circuit
 - bivalent and cascade management
- · Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- RAST 5 basic plug set

The supplementary plug set must be ordered in order to use expanded controller functions.

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:
- module expansion heating circuit or
- module expansion heat balancing or
- module expansion Universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the electrical box:

- 1 module expansion and 2 controller modules or
- 1 controller module and
- 2 module expansions or
- 3 controller modules

Notice

Max. 1 module expansion can be connected to the basic module heat generator TTE-WEZ!

Further information about the TopTronic® E see "Controls"

Oil automatic function device OFA

- · Control function integrated for
- flue gas sensor for safety shut-off
- 0-10 V output for connecting a modulating main pump (incl. ΔT control with low consumption)
- Standard plug connection for 2-stage burner 1 x 230 V
- Variable input for plant-specific functions (heat generator block, return sensor, info sensor etc.)
- Variable output for plant-specific functions (thermostat function, operating message, etc.)

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Boiler controller with TopTronic® E/E13.5 control

- Maximum operating temperature 105 °C
- Configuration as TopTronic® E/E13.4 but: safety temperature limiter 120 °C

Delivery

· Boiler controller separately delivered

On site

• Mounting of the boiler controller at the boiler left or right side

Control panel with thermostat T 2.2

- · Maximum operating temperature 90 °C
- For systems without TopTronic® E control
- For direct 2-stage burner control, requirement starting from external calorifier or heater instruction is possible.
- Main switch "I/O"
- Safety temperature limiter 110 °C
- · Selector switch burner load
- · Switch summer/winter
- 3 boiler temperature regulators 30-90 °C
- temperature regulator for base load heating
- temperature regulator for full load heating
- temperature regulator for calorifier
- · Boiler and burner breakdown lamp
- Plug connection for burner (with cable and plug)

Optional

- 2 running time meters integrated
- 2 burner running time meters and pulse counters integrated
- Flue gas thermometer, 4.5 m capillary tube

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Control panel with thermostat T 0.2

- Maximum operating temperature 105 °C
- For external control
- For systems without TopTronic® E control
- For special control function
- Main switch "I/O"
- Safety temperature limiter 120 °C
- 3 boiler temperature regulators 50-105 $^{\circ}\text{C}$
 - temperature regulator for base load heatingtemperature regulator for full load heating
 - temperature regulator for calorifier
- · Without burner plug connection

Optiona

- 2 running time meters integrated
- 2 burner running time meters and pulse counters integrated
- Flue gas thermometer, 4.5 m capillary tube
- Safety temperature limiter 130 °C

Delivery

· Boiler controller separately delivered

On site

 Mounting of the boiler controller at the boiler left or right side

Oil/gas boiler

Permission Boiler
Directive on appliances burning
gaseous fuels 90/396/EG
Max-3 plus (420-2700):
CE product ID No. CE-0085BL0015
Pressure Equipment Directive 2014/68/CE

Hoval Max-3 plus (420-2700)

High-efficiency 3-pass boiler made of steel for oil/gas LowNOx firing, without control panel. For operating temperature up to 105 °C

Execution: complete delivery Boiler, thermal insulation and casing delivered separately packed.

Max-3 plus type	Max min. output kW	Operating pressure bar
(420)	200-420	6
(530)	220-530	6
(620)	240-620	6
(750)	280-750	6
(1000)	350-1000	6
(1250)	480-1250	6
(1500)	650-1500	6
(1800)	750-1800	6
(2200)	920-2200	6
(2700)	1030-2700	6

The minimum boiler operating temperature and the minimum boiler return temperature must imperatively be observed (see technical data).

A constant return temperature control must be provided!

The condensate trap must imperatively be mounted on the flue gas outlet of the boiler!

Part No.

7013 783
7013 784
7013 785
7013 786
7013 787
7013 788
7013 626
7013 627
7013 628
7013 659

Max-3 plus (420-1250)

Туре		(420)	(530)	(620)	(750)	(1000)	(1250)
 Nominal output at 80/60 °C Range of output at 80/60 °C Burner input max. 	kW kW kW	420 147-420 441	530 185-530 557	620 217-620 651	750 263-750 788	1000 350-1000 1050	1250 437-1250 1313
 Boiler operating temperature max. ¹⁾ Boiler operating temperature min. Return flow temperature min. Safety temperature limiter setting (water side) ²⁾ 	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	90		90 le operating le operating 110			90
 Operating pressure Boiler efficiency at 80/60 °C in full-load operation (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	bar %	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8
 Boiler efficiency at 30 % partial load (EN 303) (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	%	97.1/91.6	97.1/91.6	97.1/91.6	97.1/91.6	97.1/91.6	97.1/91.6
 Nominal efficiency at 75/60 °C (DIN 4702-8) (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	%	97.0/91.5	97.0/91.5	97.0/91.5	97.0/91.5	97.0/91.5	97.0/91.5
• Stand-by loss qB at 70 °C	Watt	1000	1035	1120	1180	1250	1380
 Flue gas resistance at nominal output natural gas: 10.8 % CO₂, 500 m over sea level (tolerance ± 20 %) Flue gas mass flow at nominal output natural gas: 10.8 % CO₂ 	mbar kg/h	6.5 680	8.0 859	8.2 1004	9.5 1215	10.0 1619	12.0 2025
 Flow resistance boiler ³⁾ Water flow resistance at 10 K Water flow resistance at 20 K Water flow volume at 10 K Water flow volume at 20 K 	z-value mbar mbar m³/h m³/h	0.022 28.70 7.17 36.12 18.06	0.022 45.70 11.42 45.58 22.79	0.008 22.74 5.68 53.32 26.66	0.008 33.28 8.32 64.50 32.25	0.003 22.18 5.54 86.00 43.00	0.003 34.66 8.66 107.50 53.75
 Boiler water content Boiler gas volume Insulation thickness boiler body Weight (incl. casing) Weight (without casing) 	litres m³ mm kg kg	552 0.583 80 1111 943	520 0.602 80 1171 1000	969 0.846 80 1795 1590	938 0.872 80 1831 1620	1528 1.350 80 2535 2360	1478 1.390 80 2643 2460
 Combustion chamber dimension Ø inside x length Combustion chamber volume 	mm m³	606/1624 0.466	606/1624 0.466	684/1899 0.669	684/1899 0.669	782/2182 1.047	782/2182 1.047
Dimensions				see Dim	ensions		
Draught/underpressure at flue gas outlet max.	Pa	-50	-50	-50	-50	-50	-50

Possible operating conditions

Fuel	Heating oil EL	Natural gas H
	C 65 C 55	75 65
Return temperature control	yes	yes

¹⁾ Limited by the boiler controller E13.4 TopTronic® E and T 2.2 to 90 °C or by E13.5 TopTronic® E and T 0.2 to 105 °C.
2) Max. safety temperature for boiler controller E13.4 TopTronic® E and T 2.2: 110 °C or E13.5 TopTronic® E and T 0.2: 120 °C.
3) Flow resistance boiler in mbar = flow rate (m³/h)² x z

Max-3 plus (1500-2700)

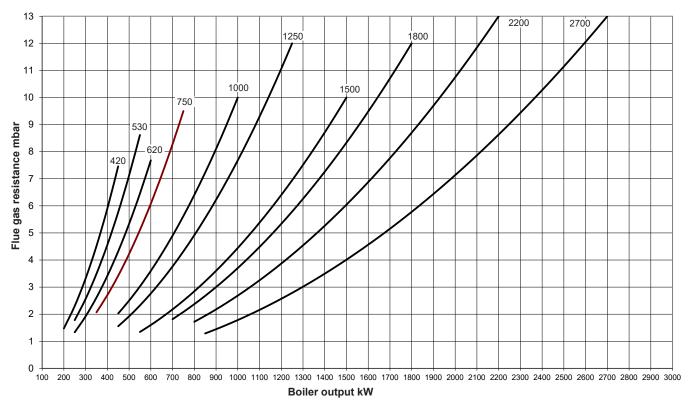
Туре		(1500)	(1800)	(2200)	(2700)
 Nominal output at 80/60 °C Range of output at 80/60 °C Burner input max. 	kW kW kW	1500 525-1500 1575	1800 630-1800 1890	2200 770-2200 2310	2700 945-2700 2835
 Boiler operating temperature max. ¹⁾ Boiler operating temperature min. Return flow temperature min. Safety temperature limiter setting (water side) ²⁾ 	°C °C °C	90	90 see table operating of see table operating of 110		90
 Operating pressure Boiler efficiency at 80/60 °C in full-load operation (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	bar %	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8	6 95.2/89.8
 Boiler efficiency at 30 % partial load (EN 303) (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	%	97.1/91.6	97.1/91.6	97.1/91.6	97.1/91.6
 Nominal efficiency at 75/60 °C (DIN 4702-8) (related to net calorific value NCV / gross calorific value GCV, heating oil EL) 	%	97.0/91.5	97.0/91.5	97.0/91.5	97.0/91.5
• Stand-by loss qB at 70 °C	Watt	1850	1950	2100	2300
 Flue gas resistance at nominal output natural gas: 10.8 % CO₂, 500 m over sea level (tolerance ± 20 %) Flue gas mass flow at nominal output natural gas: 10.8 % CO₂ 	mbar kg/h	10.0 2429	12.0 2916	13.0 3564	13.0 4374
 Flow resistance boiler ³ Water flow resistance at 10 K Water flow resistance at 20 K Water flow volume at 10 K Water flow volume at 20 K 	z-value mbar mbar m³/h m³/h	0.002 33.1 8.3 128.6 64.3	0.002 47.6 11.9 154.3 77.4	0.002 71.1 17.8 188.6 94.3	0.001 53.6 13.4 231.5 115.7
 Boiler water content Boiler gas volume Insulation thickness boiler body Weight (incl. casing) Weight (without casing) 	litres m³ mm kg kg	2343 1.956 80 3748 3400	2750 2.510 80 4955 4600	3050 2.761 80 5230 4800	3550 3.037 80 5810 5350
 Combustion chamber dimension Ø inside x length Combustion chamber volume 	mm m³	880/2415 1.58	980/2595 2.07	980/2895 2.30	980/3200 2.41
Dimensions			see Dime	nsions	
Draught/underpressure at flue gas outlet max.	Pa	-50	-50	-50	-50

Possible operating conditions

Fuel		Heating oil EL	Natural gas H, low-sulphur heating oil EL
	°C °C	65 55	75 65
Return temperature control		yes	yes

¹⁾ Limited by the boiler controller E13.4 TopTronic® E and T 2.2 to 90 °C or by E13.5 TopTronic® E and T 0.2 to 105 °C.
2) Max. safety temperature for boiler controller E13.4 TopTronic® E and T 2.2: 110 °C or E13.5 TopTronic® E and T 0.2: 120 °C.
3) Flow resistance boiler in mbar = flow rate $(m^3/h)^2 x z$

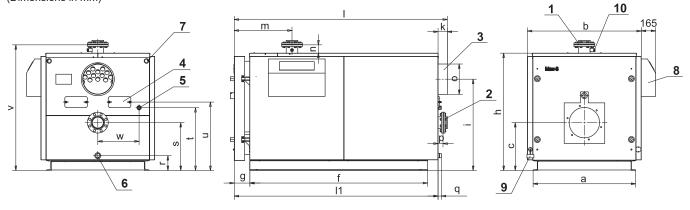
Flue gas output diagram



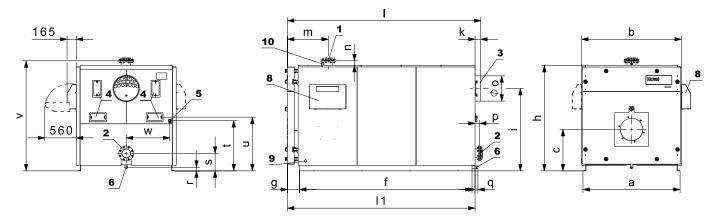
kW = boiler output

°C = flue gas temperature on a clean surface, flow temperature 80 °C, return temperature 60 °C (in accordance with DIN 4702).

- Operation with heating oil EL, natural gas
 λ = 1.22 with max. burner output (CO₂ heating oil EL = 12.5 %, CO₂ natural gas = 9.8 %)
- A reduction of the boiler water temperature of 10 K causes a reduction of the flue gas temperature of approx. 6-8 K.
- A modification of the CO₂ concentration of + 1 % causes a modification of the flue gas temperature of approx. – 8 K.
- A modification of the CO₂ concentration of
 1 % causes a modification of the flue gas temperature of approx. + 8 K.


Flue gas resistor

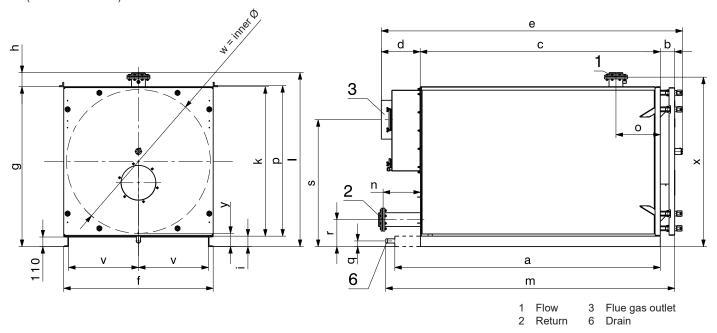
kW = boiler output


mbar = flue gas resistance λ = 1.11 (natural gas: CO_2 = 10.8 %) 500 above sea level (tolerance: \pm 20 %)

Max-3 plus (420-1250) (Dimensions in mm)

Max-3 plus (1500-2700)

(Dimensions in mm)


- DN 100, PN 6 Flow (420,530)1 (620,750)DN 125, PN 6 DN 150, PN 6 (1000,1250) (1500-2200) DN 150, PN 6 (2700) DN 200, PN 6
- DN 100, PN 6 Return (420,530) (620,750)DN 125, PN 6 (1000,1250) DN 150, PN 6 (1500-2200) DN 150, PN 6 DN 200, PN 6 (2700)
- Flue gas outlet
- Cleaning opening

- Flue gas collector cleaning opening R 1"
- Drain R 11/2"
- Cable routing 7
- Control panel 8
- Electrical connection 9
- Bushing Rp 3/4" with immersion sleeve for boiler temperature sensor

Max-3 plus type	а	b	С	f	g	h	i	k	I	I1	m	n	Øo	р	q	r
(420,530)	1060	1190	515	1770	181	1230	950	104	2178	2074	641	100	299	54	34	175
(620,750)	1180	1310	550	2045	181	1350	1050	105	2452	2347	666	95	349	55	35	170
(1000,1250)	1370	1500	635	2330	181	1550	1250	107	2739	2632	681	111	349	77	37	175
(1500)	1560	1610	665	2685	212	1710	1350	103	3040	2940	722	80	447	83	34	65
(1800)	1720	1770	735	3055	214	1870	1460	103	3424	3320	724	80	447	83	52	65
(2200)	1720	1770	735	3355	214	1870	1460	101	3724	3625	724	80	447	81	50	65
(2700)	1750	1800	755	3700	212	1900	1410	82	4032	3950	722	80	647	82	51	65

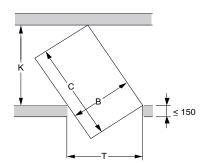
Max-3 plus						
type	S	t	u	٧	W	X
(420,530)	350	595	660	1330	450	-
(620,750)	550	722	786	1445	475	-
(1000,1250)	415	620	685	1660	590	-
(1500)	310	777	842	1790	695	1850
(1800)	310	890	952	1950	773	2040
(2200)	310	890	952	1950	773	2340
(2700)	370	917	982	1980	790	2670

Dimensions without insulation and casing Boiler incl. hinged flange, connector and flue gas collector. (Dimensions in mm)

Max-3 plus															
type	a 1)	b	С	d	е	f	g	h	i	k	I	m	n	0	р
(420,530)	1920	150	1770	277	2222	1060	1180	196	120	1060	1376	2077	175	460	1072
(620,750)	2195	150	2045	228	2498	1180	1300	196	120	1180	1496	2353	172	485	1192
(1000,1250)	2480	150	2330	228	2783	1370	1500	187	120	1380	1660	2638	198	500	1392
(1500)	2685	164	2568	260	3078	1560	1680	162	120	1560	1842	2923	240	510	-
(1800)	3055	166	2760	450	3467	1720	1840	162	120	1720	2002	3325	430	510	-
(2200)	3355	166	3060	450	3767	1720	1840	162	120	1720	2002	3625	430	510	-
(2700)	3700	164	3390	430	4075	1750	1870	169	120	1750	2039	3953	430	510	-

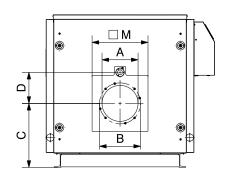
Max-3 plus							
type	q	r	S	V	W	Х	У
(420,530)	175	350	950	475	990	-	-
(620,750)	170	550	1050	535	1110	-	-
(1000,1250)	175	415	1250	630	1298	-	-
(1500)	65	310	1350	725	1494	1790	153
(1800)	65	310	1460	805	1654	1950	153
(2200)	65	310	1460	805	1654	1950	153
(2700)	65	370	1410	820	1684	1980	153

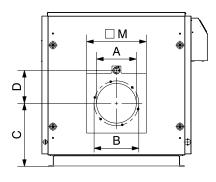
¹⁾ Max-3 plus (1500-2700) socket protrudes


Required min. width of door and corridor to bring in the boiler

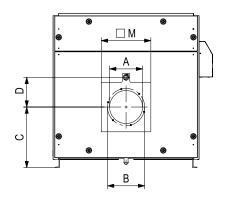
The stated measurements are minimal dimensions

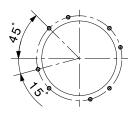
В Κ


- Door width
- Corridor width
- Boiler width
- Max. boiler length

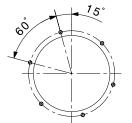

Hoval

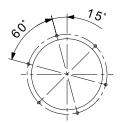
Furnace dimensions


Max-3 plus (420,530)

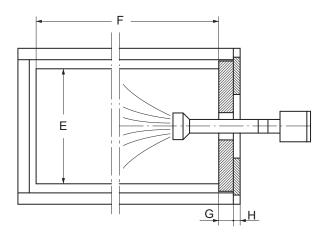


Max-3 plus (620-1250)

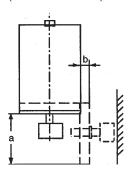

Max-3 plus (1500-2700)


Screw joint flange Max-3 plus (420,530)

4 x M12 (45°) 4 x M12 (15°)



Screw joint flange Max-3 plus (620,750) 6 x M12 (15°)


Screw joint flange Max-3 plus (1000,1250) 6 x M16 (15°)

Screw joint flange Max-3 plus (1500-2700) 6 x M16 (15°)

Swinging out of boiler doorBoiler door is swivelling to the right or left (Dimensions in mm)

Dimensions (Dimensions in mm)

Max-3 plus									
type	Α	В	С	D	Е	F	G	Н	M
(420,530)	290	330	515	250	606	1624	163	30	450
(620,750)	350	400	550	310	684	1899	163	30	600
(1000,1250)	400	450	635	330	782	2182	163	30	600
(1500)	400	450	665	360	880	2417	170	30	600
(1800)	400	450	735	360	976	2605	170	30	600
(2200)	400	450	735	360	976	2905	170	30	600
(2700)	400	450	755	360	976	3233	170	30	600

Max-3 plus type	а	b
(420,530)	1060	150
(620,750)	1180	150
(1000,1250)	1370	150
(1500)	1520	175
(1800,2200)	1680	175
(2700)	1700	175

Standards and guidelines

The official regulations for installation and operation must be observed. In particular, these are the country-specific standards (e.g. EN standard, DIN standards etc.) as well as the corresponding regional regulations.

The following requirements and directives must be complied with:

- Hoval technical information and installation instructions
- hydraulic and technical control regulations of Hoval
- DIN EN 12828 Safety-relevant requirements
- DIN EN 12831 Heaters
 Rules for the calculation of the heat requirements of buildings
- VDI 2035 Protection against damage by corrosion and boiler scale formation in heating and service water installations
- EN 14868 Protection of metallic materials against corrosion
- VDE 0100 supplement 2

Water quality in heating systems Filling and replacement water, heating water

The following applies:

- VDI 2035
- In addition, the EN 14868 standard must be applied, as well as the manu facturer-specific specifications

Manufacturer-specific specifications

Filling and replacement water

The filling and replacement water can be both fully demineralised and also merely softened.

Heating water

- In the case of full demineralisation of the filling and replacement water, the electrical conductivity of the heating water must not exceed the value of 100 µS/cm.
- In the case of softening the filling and replacement water, the following conditions must be complied with:

The quality of the heating water must be checked and documented periodically:

- For an installed heat output above 100 kW up to and including 1000 kW, an annual check of the heating water is required.
- For an installed heat output above 1000 kW, an check of the heating water is required twice a year.

The following standard values for the heating water must be measured and adhered to:

- Electrical conductivity of the heating water for operation with water containing salts:
 > 100 μS/cm to ≤ 1500 μS/cm
- pH value of the heating water for systems without aluminium alloy as water-side material 8.2 to 10.0 (measurement 10 weeks after commissioning at the earliest)
- The sum of the chloride, nitrate and sulphate contents in the heating water must not exceed 50 mg/l in total.

Additional notices

- Hoval boilers and calorifiers are suitable for heating systems without significant oxygen intake (system type I according to EN 14868).
- Systems with continual oxygen intake (e.g. underfloor heating without diffusion-proof plastic piping) or intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- If only the boiler is replaced in an existing system, it is not recommended for the entire heating system to be refilled, provided that the heating water already contained in the system complies with the relevant directives or standards.
- Before filling new systems and, where necessary, existing heating systems containing heating water that does not comply with the directives or standards, the heating system must be professionally cleaned and flushed. The boiler must not be filled until the heating system has been flushed.

Frost protection agent

The planning sheet "Use of frost protection agent" is available from your Hoval contact person.

Combustion air supply

The combustion air supply must be warranted. The air opening must not be lockable. It is very important to ensure that the combustion air is free from halogen compounds. These are present, for example, in spray cans, varnishes, glues, solvents and cleansing agents.

Room air dependent operation:

- Minimum free cross-section for the air opening can be assumed as follows by way of simplification. Nominal heat output is the determining factor!
- A minimum free cross-section of once 150 cm² or twice 75 cm² and an additional 2 cm² for each kW boiler capacity in excess of 50 kW is required for the air opening into the outside air.

Burner installation

- If the weight of the burner (including attachments) of gas and dual-fuel burners is more
 than 90 kg and the distance of the centre
 of gravity of the burner to the boiler door is
 greater than 60 cm, support the burner casing weight directly with a strut to the boiler
 room floor.
- Depending on the size of the burner flange, an intermediate flange may be required to attach the burner. The intermediate flange including screws and seal must be supplied by the burner company.
- The lines must be positioned so that the boiler door can still be fully opened.
- To allow the boiler door to be swung out 90° to the left or right, the connections must be flexible and routed to the burner in a sufficiently large loop
- In systems with ThermoCondensor, the burner must additionally absorb the resistance of the heat exchanger

The space between the burner pipe and the hinged flange is to be insulated. A line must be routed from the burner to the sight glass to carry cooling air, in order to cool the boiler sight glass and keep it clean (delivery by the burner company).

Electric connection of the burner

- Control voltage 1 x 230 V
- Burner motor 1 x 230 V / 3 x 400 V
- The burner must be connected to the burner connection plug of the boiler.
- For safety reasons the electrical cable of the burner must be that short that the plug must be removed when swivelling boiler door.

Sound absorbing

Sound absorption is possible through the following steps:

- Heating room walls, ceiling and floor should be very solidly built, a sound insulation should be mounted into the air inlet. Pipe holders and support should be protected by means of anti-vibration sleeves.
- · Install sound attenuation cowl for burner.
- If living rooms are located above or under the boiler room, vibration absorbers have to be mounted to the boiler base. Pipes and flue gas tube must be connected flexibly with compensators.
- Connect circulating pumps to the piping network using expansion joints.
- For damping of flame noise it is possible to install a silencer into the flue gas tube (space should be foreseen for later installation).

Measures for sound reduction

Make sure right from the planning phase that bedrooms are not situated in the immediate vicinity of the sound source (heating room, chimney).

A reduction of the radiated burner air sound level in the heating room (reduction of the burner noises) of up to approx. 12 dB can be achieved encapsulating the burner (sound attenuation cowl).

A significant part of the noise development in the combustion chamber and in the secondary heating surfaces is radiated as airborne noise via the flue gas line.

In addition, depending on dimensioning of the chimney and intersection, resonance effects caused by the vibration of the combustion noises (amplification) can occur.

These noises can be reduced on the one hand by measures on the burner side, such as modification of the flame geometry, the atomisation characteristic or the fuel throughput.

On the other hand, flue gas silencers achieve an important noise reduction.

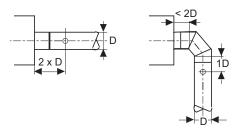
These silencers must usually be adapted to low frequencies of 60-250 Hz.

Flue gas silencers work based on the principle of sound absorption.

The kinetic energy of the flue gases is consumed due to friction, which means a draughting requirement increase in the flue gas line is necessary. This must be taken into account when dimensioning the burner.

The connection piece from the boiler to the flue gas silencer must be gas-tight as the draught and pressure zero points lie behind the flue gas silencer.

The space required of approx. 1 m for retrofitting of a flue gas silencer should be provided during planning.


Note also that secondary air devices are installed only behind a flue gas silencer.

Installation instructions

Please observe the installation instructions supplied with every boiler.

Chimney/flue gas system Flue gas line

The flue gas tube between boiler and chimney must be connected with an angle 30-45° to the chimney.

- If the flue gas tube is longer than 1 m, it must be insulated.
- The flue gas tube must be designed that no condensate water can get into the boiler.
- A closeable flue gas measuring socket with an inner diameter of 10-21 mm must be foreseen. The socket has to be led over the thermal insulation.

Chimney

- The flue gas system must be humidityinsensitive and acid-proof and admitted for flue gas temperatures up to > 160 °C.
- For existing chimney installation the restoration must be carried out according to the instructions of the chimney constructor.
- Calculation of the profile of the chimney according to DIN 4705.
- It is recommendable to use a secondary air valve for chimney draft limiting.

Flue gas temperature and power ranges

In order to achieve a good combustion quality (optimum flame burnout), the outputs must not be less than the specified minimum values. For new systems, acid-resistant chimneys must be provided or the flue gas temperature must be set correspondingly higher (min. 160 °C).

The minimum flue gas temperature must be coordinated with the chimney conditions, otherwise the formation of sulphuric acid can lead to soot buildup in the chimney.

Diaphragm pressure expansion tank

 Ideally, the diaphragm pressure expansion tank should be connected to the heating system as described in our example applications, with a removable or sealable actuation device. This means that it is not necessary to drain the entire system in order to carry out work on the diaphragm pressure expansion tank.

Safety valve

 A safety valve and an automatic air vent must be installed in the safety flow.

Hoval – heating and climate technology for industrial, commercial and leisure applications.

With over 75 years' experience, Hoval is one of the leading international companies for indoor climate systems. For our customers, we develop modern, decentralised heating, cooling and ventilation solutions for large halls for a diverse range of applications.

From workshops, production halls and logistics centres to aircraft hangars, shopping centres and swimming pools – our experts can design indoor climate systems tailored to your individual requirements.

And the best part: the flexibility of our systems means they can easily be adapted to meet your changing needs in the future, giving you excellent long-term results.

As a specialist in universal systems for heating, cooling and ventilation, we assist our customers at every stage of the system lifecycle at their facility – from planning and operation right through to modernisation. In doing so, we help our customers to benefit from energy-efficient solutions and first-class air quality both today and tomorrow.

The perfect climate in every hall.

The perfect climate and pleasant, performance-enhancing conditions for both work and well-being in halls for industrial, commercial and leisure applications. The new generation of decentralised indoor climate systems from Hoval makes it all possible.

The modular ventilation, heating and cooling systems consist of units distributed within the hall space with demand-driven control. Installed in a select number of specific locations, these systems ensure optimum climate conditions throughout the entire hall, even where different requirements are involved. The supply and extract air handling units, supply air units and recirculation units are equipped with optimised air distribution and, if desired, their own heat and cold generation system.

Hoval indoor climate systems overcome any challenge

- Decentralised and modular
- Efficient and economical
- Clean and ecological
- Competent and reliable

A single system – the interplay of perfectly matched products

■ RoofVent®

Supply and extract air handling units for ventilating, heating and cooling high spaces with energy recovery.

Additional variants:

- with heat pump for decentralised heating and cooling
- with gas condensing boiler for decentralised heating

■ TopVent®

Recirculation and supply air units for cost-effective heating and cooling of high spaces with recirculated or mixed air Additional variants:

- as roof units for more space and undisturbed operation in the hall
- with heat pump for decentralised heating and cooling
- with gas condensing boiler for decentralised heating

ProcessVent

compact units for ventilating, heating and cooling production halls with highly efficient energy recovery from process air

Decentralised

and modular.


We design our Hoval indoor climate systems as technically autonomous and energy-independent individual solutions.

Quick and easy to plan, our systems can be perfectly integrated into virtually any environment without the need for structural measures.

And if things change in the future, our solutions simply develop along with your plans. Whether converting or expanding, the modular structure of the Hoval systems allows you to adapt to new challenges with minimal expense and low investment costs.

Maximum practicality and perfectly matched – we tailor your indoor climate system to your exact specifications

- Efficient air distribution with the integrated
 Air-Injector reduced heat loss and no pressure drops in ducts
- Huge choice of units and specific designs for every application
- Completely preassembled, ready-to-connect systems for hassle-free installation, quick start-up and easy maintenance
- Compatible, open-interface components for easy connectivity to external connections and perfect integration with the building management system

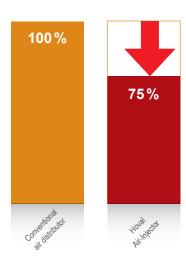
Efficient and economical.

Hoval indoor climate systems are an easy and efficient solution. The patented Hoval Air-Injector air supply and distribution system helps reduce temperature stratification in the halls. The difference between the room temperature under the roof and the outside temperature remains small and only a minimal amount of energy is lost through the roof.

The Air-Injector's powerful, efficient air distribution allows the components to cover a large operating area, meaning that only a relatively low air flow rate is required. Not only does this save on investment costs, but also on drive energy and running costs too. Potential energy savings for specific applications can quickly and easily be calculated using the Hoval calculation tool.

The ready-to-connect, pre-installed units with integrated measurement, control and regulation components also ensure cost-effective, quick and smooth system planning, installation and start-up of the systems.

Efficient indoor climate systems are good for the environment – and your finances

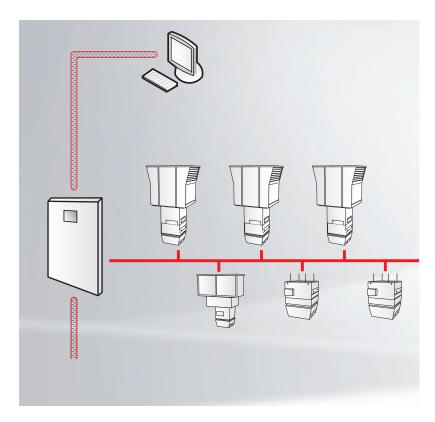

- Ideal air supply and distribution for minimum energy loss and maximum comfort
- Connection of recirculation units optimised according to requirements
- "Air-Quality" operating mode for ventilation according to requirements
- Economical night cooling with temporarily adapted reduced air volume
- 24/7 cooling and overheating protection
- Hoval energy recovery offering superior performance and even higher energy efficiency

Heating operation: The supply air is warmer and thus lighter than the room air. The vertical inflow of air ensures that the heat reaches the areas where it is needed.

Cooling operation: The inflowing air is colder than the room air and sinks. To avoid draughts, it is injected horizontally.

Compared to other systems, they often require far lower air flow rates to achieve the required and desired conditions.

Clean


and ecological.

Hoval indoor climate systems create a comfortable climate and always ensure fresh air. By guiding the air streams separately in the plate heat exchanger, dirt and odours from the extract air are diverted directly outside, preventing contamination of the supply air.

The individual indoor climate system units are installed on the ceiling or in the roof, distributed throughout the interior. Supply and extract air ducts are not required and there are no contaminated, difficult-to-clean pipes. Duct-free ventilation is therefore able to ensure maximum hygiene and comfort.

Fresh air at all times – a plus for the environment and your health

- Renewable energy for heating and cooling
- Highly efficient energy recovery
- Fully separate air streams in energy recovery
- Clean supply air at all times, as difficult-toclean air ducts are not required

The zone-based control concept enables need-based ventilation, heating and cooling of indoor areas used for various purposes.

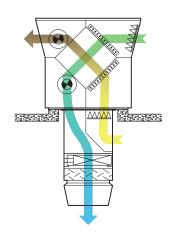
Competent and reliable.

Right from the planning stage, our specialists get to grips with your system's unique requirements profile. Drawing on their expertise and years of experience, they bring together the best possible units and components from across the Hoval product ranges to create your tailor-made indoor climate system. Energy efficient and cost effective, easy to operate, environmentally friendly, easy to service and good for your staff.

You can rely on Hoval – over the entire lifecycle of our products

- Ready-to-connect systems with pre-defined hydraulic and electric connection points for hassle-free planning
- Compact and simple function units with easy, clearly defined operating modes for smooth integration in any building
- Patented control algorithms with our specialists' expertise for energy-efficient operation
- Safety guarantee with CE certification
- Reliable, durable operation and hassle-free maintenance during operating times due to units that can be deactivated individually
- Independent unit response to alarm messages with alarm notification via e-mail
- Local contact for guaranteed close cooperation and immediate assistance at all times
- One contact person for the entire system

RoofVent® supply and extract air handling units


Ventilation, heating and cooling of high spaces with energy recovery.

There is more than 45 years of climate technology experience in the new RoofVent® generation. This experience has allowed us to see what an environmentally compatible and easy-to-use indoor climate system looks like. The units in the RoofVent® product range control the supply of fresh air and the removal of extract air through the roof – all while guaranteeing maximum energy efficiency. This economical and ecological indoor climate solution is perfect for use in combination with heat pumps.

RoofVent® supply and extract air handling units – it doesn't get more efficient than this

- Huge amount of flexibility and customised applications due to diverse product variants with optional equipment
- Heat recovery rate of up to 86% with the Hoval high-performance plate heat exchanger
- Suitable for combination with reversible heat pumps with a heating and cooling capacity of up to 67 kilowatts
- Reduced investment costs, as an equipment room and water supply network are not required
- Easily extendable with additional units
- Connection point for the entire electrical system on the below-roof unit – the electrical supply for the roof unit is integrated and tested at the factory
- Hoval HK-Select planning tool with all technical data for the quick and easy design of the RoofVent® units
- Efficient air distribution with the integrated Air-Injector – reduced heat loss and no pressure drops in ducts

Technical data	
Air flow rate	m³/h
Heat output	kW
Cooling capacity (total)	kW
Operating distance	m x m
Weight	kg

Supply and extract air handling units with efficient air distribution

RoofVent® RP

Heating and cooling with decentralised heat pump

RoofVent® RG

Heating with gas-fired heat generation

RoofVent® RH

Heating with central heat generation

RoofVent® RC

Heating and cooling with central heat and cold generation in the 2-pipe system

RoofVent® RHC

Heating and cooling with central heat and cold generation in the 4-pipe system

Ventilation

- Fresh air supply
- Extract air removal
- Filters fresh air, recirculated air and extract air
- Air distribution with Air-Injector
- Recirculation operation

Ventilation

- Fresh air supply
- Extract air removal
- Filters fresh air, recirculated air and extract air
- Air distribution with Air-Injector
- Recirculation operation

Ventilation

- Fresh air supply
- Extract air removal Filters fresh air,
- recirculated air and extract air
- Air distribution with Air-Injector
- Recirculation operation

Ventilation

- Fresh air supply Extract air removal
- Filters fresh air, recirculated air and extract air
- Air distribution with Air-Injector
- Recirculation operation

Ventilation

- Fresh air supply
- Extract air removal
- Filters fresh air, recirculated air and extract air
- Air distribution with Air-Injector
- Recirculation operation

Heating

■ With heat pump

Heating

■ With condensing gas boiler

Heating

■ With connection to boiler system

Heating

■ With connection to boiler system

Heating

■ With connection to boiler system

Cooling

- Free cooling
- With heat pump

Cooling

■ Free cooling

Cooling

■ Free cooling

Cooling

- Free cooling
- With connection to water chiller

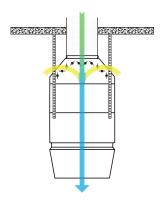
Cooling

- Free cooling
- With connection to water chiller

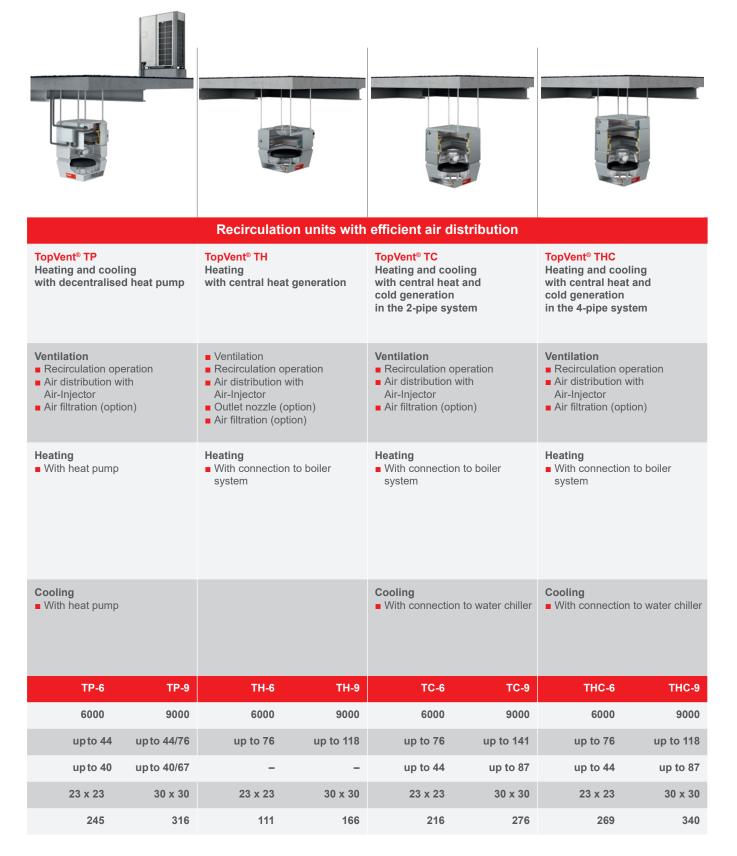
Energy reco	very	Energy recovery	Energy reco	overy	Energy reco	very	Energy reco	very
RP-6	RP-9	RG-9	RH-6	RH-9	RC-6	RC-9	RHC-6	RHC-9
5500	8000	8000	5500	8000	5500	8000	5500	8000
up to 44	up to 44/76	up to 70	up to 78	up to 139	up to 78	up to 139	up to 78	up to 139
up to 40	up to 40/67	-	-	-	up to 52	up to 98	up to 52	up to 98
22 x 22	28 x 28	28 x 28	22 x 22	28 x 28	22 x 22	28 x 28	22 x 22	28 x 28
911	1200	1251	849	1104	882	1171	919	1244

TopVent® recirculation and supply air units

Cost-effective solution for heating and cooling high spaces with supply air, recirculation or mixed air.


From large halls and high spaces to high-bay warehouses and supermarkets, the extensive model range in the TopVent® supply air and recirculation unit series caters to even the most diverse requirements and individual comfort expectations. The combination of decentralised and central heat and cold generation and the decentralised ventilation unit guarantees maximum sustainability in both the medium and long term.

Supply air and recirculation units in different output levels guarantee efficient air distribution via the patented Air-Injector vortex air distributor. Depending on the difference in temperature between the hall air and the air being blown in, the Air-Injector continuously and automatically adjusts the blowing angle and ensures an optimum flow stability.


The future of indoor climate systems: cost efficient, flexible and environmentally friendly

- Maximum flexibility for all types of halls and hall usages with its modular and scalable system building block design with controller TopTronic®C (heat generation, recirculation air heating and cooling and zone-based control)
- Cost-effective supplement to the RoofVent® supply and extract air handling systems if there is a temporary increase in demand for heat or cooling capacity
- Air duct-free systems for easy assembly and low energy consumption
- Different coil types and accessories for tailor-made solutions
- Air curtains of different sizes and designs to protect entrance areas against the cold
- Control of up to ten units with the EasyTronic EC controller
- All supply air units can easily be adapted for operation with recirculated or mixed air
- All supply air units are available in two sizes, each fitted with a continuously adjustable fan and heating/cooling coil in different output levels for tailor-made solutions
- Hoval HK-Select planning tool with all technical data for the quick and easy design of the TopVent® units
- Efficient air distribution with the integrated Air-Injector reduced heat loss and no pressure drops in ducts

Technical data	
Air flow rate	m³/h
Heat output	kW
Cooling capacity (total)	kW
Operating distance	m x m
Weight	kg

TopVent® recirculation units

TopVent® recirculation units

Recirculation units

TopVent® TW pro

Air curtain with central heat generation

TopVent® TV

Heating with central heat generation

Ventilation

- Recirculation operationAir distribution via outlet grid

Ventilation

- Recirculation operation
- Air distribution via air outlet louvre

Heating

- With connection to boiler system TW Pro 150-1 TW Pro 150-2 TW Pro 200-1 TW Pro 200-2

Heating

■ With connection to boiler system

Technical data	
Air flow rate	m³/h
Heat output	kW
Cooling capacity (total)	kW
Operating distance	m x m
Weight	kg

150-0	200-0	150-1	200-1	150-2	200-2	TV-2	TV-4	TV-5
8500	12800	7900	11900	7300	10700	2100	4850	5700
-	-	up to 32	up to 48	up to 58	up to 88	up to 13	up to 30	up to 45
-	-	-	-	-	-	-	-	-
8.0	8.0	7.5	7.5	7.0	7.0	7 x 7	10 x 10	12 x 12
43	58	51	66	54	70	16	23	24

TopVent® supply air units

Supply air units with efficient air distribution

TopVent® MP

Heating and cooling with decentralised heat pump

TopVent® MH

Heating with central heat generation

TopVent® MC

Heating and cooling with central heat and cold generation in the 2-pipe system

TopVent® MHC

Heating and cooling with central heat and cold generation in the 4-pipe system

Ventilation

- Fresh air supply (duct connection)
- Mixed air operation
- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Fresh air supply (duct connection)
- Mixed air operation
- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Fresh air supply (duct connection)
- Mixed air operation
- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Fresh air supply (duct connection)
- Mixed air operation
- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Heating

■ With heat pump

Heating

■ With connection to boiler system

Heating

■ With connection to boiler system

Heating

■ With connection to boiler system

Cooling

■ With heat pump

Cooling

■ Free cooling

Cooling

■ Free cooling

■ With connection to water chiller

Cooling

■ Free cooling

■ With connection to water chiller

MP-6	MP-9	MH-6	MH-9	MC-6	MC-9	MHC-6	MHC-9
6000	9000	6000	9000	6000	9000	6000	9000
up to 44	up to 44/76	up to 78	up to 121	up to 78	up to 145	up to 78	up to 121
up to 40	up to 40/67	-	-	up to 34	up to 68	up to 34	up to 68
23 x 23	30 x 30	23 x 23	30 x 30	23 x 23	30 x 30	23 x 23	30 x 30
304	380	172	228	266	334	305	399

TopVent® roof units

The TopVent® roof ventilation units have been specially developed for the requirements of modern logistics, production or industrial halls.

- Maintenance access from the outside
- Optimum climate
- Economical

These units are mainly used where undisturbed hall operation at a constant temperature is required. Service, maintenance and even installation are performed from the roof, so operation can continue in the hall without any disruption.

4 recirculation and supply air units in each case, with various output levels, guarantee efficient air distribution via the patented Air-Injector vortex air distributor.

Heating and cooling is possible using a central supply or with a decentralised heat pump (TopVent® SH optionally also available with adiabatic cooling).

For undisturbed hall operation.

- Maintenance work can be performed from the roof, meaning that work in the hall is not restricted.
- Little space is required in the hall there just needs to be enough room for air distribution.
- Hoval HK-Select planning tool with all technical data for the quick and easy design of the TopVent[®] units
- Efficient air distribution with the integrated Air-Injector – lower heat losses and no duct pressure losses

TopVent® roof recirculation units

Roof recirculation units v

TopVent® CP

Heating and cooling with decentralised heat pump

TopVent® CH
Heating
with central heat
generation
in the 2-pipe system

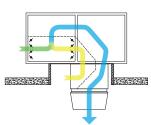
Ventilation

- Recirculation operation
- Air distribution with
- Air-Injector
 Air filtration

Ventilation

- Recirculation operation
- Air distribution with Air-Injector
- Outlet nozzle (Option)
- Air filtration

Heating


■ With heat pump

Heating

With connection to boiler system

Technical data	
Air flow rate	m³/h
Heat output	kW
Cooling capacity (total)	kW
Operating distance	m x m
Weight	kg

Cooling ■ With heat pump

CH-9	СН-6	CP-9	CP-6
9000	6000	9000	6000
up to 118	up to 76	up to 44/76	up to 44
-	-	up to 40/67	upto 40
31 x 31	23 x 23	31 x 31	23 x 23
719	616	869	672

TopVent® roof supply air units

vith efficient air distribution

TopVent® CC

Heating and cooling with central heat and cold generation in the 2-pipe system

TopVent® CHC

Heating and cooling with central heat and cold generation in the 4-pipe system

Ventilation

- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Heating

 With connection to boiler system

Heating

With connection to boiler system

Cooling

With connection to water chiller

Cooling

 With connection to water chiller

CC-6	CC-9	CHC-6	CHC-9
6000	9000	6000	9000
up to 76	up to 141	up to 76	up to 118
up to 44	up to 87	up to 44	up to 87
23 x 23	31 x 31	23 x 23	31 x 31
647	843	684	898

TopVent® SP

Heating and cooling with decentralised heat pump

TopVent® SH

Heating with central heat generation in the 2-pipe system

TopVent® SC Heating and cooling

Roof supply air units with efficient air distribution

with central heat and cold generation in the 2-pipe system

TopVent® SHC

Heating and cooling with central heat and cold generation in the 4-pipe system

Ventilation

- Recirculation operation
- Supply air operating mode
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Recirculation operation
- Supply air operating modeAir distribution with
- Air-Injector
 Outlet nozzle
- (Option)
 Air filtration

Ventilation ■ Recirculation

- operation
- Supply air operating mode
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Recirculation operation
- Supply operating air mode
- Air distribution with Air-Injector
- Air filtration

Heating

■ With heat pump

Heating

With connection to boiler system

Heating

With connection to boiler system

Heating

With connection to boiler system

Cooling

Free coolingWith heat pump

Cooling

■ Free cooling

adiabatic cooling (Option)

Cooling

Free cooling

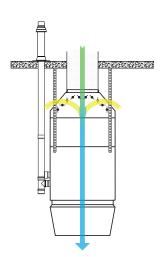
With connection to water chiller

Cooling

■ Free cooling

With connection to water chiller

SP-6	SP-9	SH-6	SH-9	SC-6	SC-9	SHC-6	SHC-9
6000	9000	6000	9000	6000	9000	6000	9000
up to 44	up to 44/76	up to 78	up to 121	up to 78	up to 145	up to 78	up to 121
up to 40	up to 40/67	-	-	up to 34	up to 68	up to 34	up to 68
23 x 23	31 x 31	23 x 23	31 x 31	23 x 23	31 x 31	23 x 23	31 x 31
717	924	661	846	692	898	729	953


TopVent® gas-fired recirculation and supply air units:

In TopVent® gas units, heat is generated via a decentralised, gas-fired heat exchanger. The modulating premix burners used keep emissions to a minimum, guaranteeing cost effectiveness and environmental efficiency. The systems are delivered ready to install with a suspension set and exhaust accessories.

Generates heat exactly where it is needed – superior technology for decentralised heating

- Heat is generated exactly where it is needed and is guided directly into the hall without any losses. No pipes or heat loss from the heat generator to the heat consumer
- Reduced investment and running costs, as a boiler room, fuel storage room and hot water supply network are not required for the gas-fired system
- Room air-independent supply supply air is injected from outside
- Broad model range permits planning to size
 precisely attuned to the room circumstances and specific requirements
- TempTronic MTC cost-effective basic controller for up to 8 TopVent GV units
- Air distribution is continuously adjusted with the integrated Air-Injector

Technical data	
Air flow rate	m³/h
Heat output	kW
Operating distance	m x m
Weight	kg

TopVent® gas-fired recirculation and supply air units:

Gas-fired recirculation and supply air units with efficient air distribution

TopVent® TG Recirculation unit

Recirculation unit with efficient air distribution

TopVent® MG

Supply air unit with efficient air distribution

TopVent® GV

Recirculation unit

Ventilation

- Recirculation operation
- Air distribution with Air-Injector
- Air filtration (option)
- Outlet nozzle (option)

Ventilation

- Fresh air supply (duct connection)
- Mixed air operation
- Recirculation operation
- Air distribution with Air-Injector
- Air filtration

Ventilation

- Recirculation operation
- Air distribution via air outlet louvre

Heating

■ With gas-fired heat exchanger

Heating

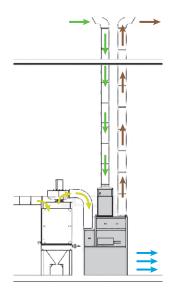
■ With gas-fired heat exchanger

Heating

■ With gas-fired heat exchanger

TG-6	TG-9	MG-6	MG-9	GV-3	GV-5
7000	11000	7000	11000	4200	8500
30	60	30	60	30	50
28 x 28	31 x 31	28 x 28	31 x 31	12 x 12	16 x 16
125	170	175	230	40	80

ProcessVent compact units


Ventilation, heating and cooling of production halls with highly efficient energy recovery from process air.

ProcessVent units in combination with an extract air purification plant form a single efficient universal system with outstanding emission levels and heating cost savings of up to 98%. The compact units are deployed in halls with enclosed machine tools or welding plants and are positioned right next to machine groups.

Clear the air and benefit from a healthy indoor climate and reduced operating costs

- Energy recovery from (clean) process air via an oil-tight plate heat exchanger ensures significantly reduced heat energy costs.
- Ecological! Even vapours which are not captured by the extract air purification plant condense in the oil-tight plate heat exchanger of the Process-Vent units. Cutting fluid can therefore be recovered or disposed of in an environmentally responsible manner.
- Choice of a heating/cooling coil for supplemental heating or cooling of the fresh air, or in recirculation operation
- ProcessVent units use the integrated control to work both in conjunction with the extract air purification plant or autonomously. This means that each unit can be tailored to each operating condition.
- Complies with the legal requirements for energyefficient, environmentally friendly production methods and healthy working conditions
- Possibility of an investment subsidy through relevant subsidy programmes, including subsidies for cross-sectional technologies or energy recovery and waste heat utilisation measures

Technical data	
Air flow rate	m³/h
Heat output	kW
Cooling capacity (total)	kW
Operating distance	m x m
Weight	kg

Compact units with energy recovery from process air

ProcessVent PV

Compact unit for ventilating with energy recovery from process air

ProcessVent PVH

Compact unit for ventilating and heating with energy recovery from process air

ProcessVent PVC

Compact unit for ventilating, heating and cooling with energy recovery from process air

Ventilation

- Fresh air supply
- Extract air removal (air conveyance via the extract air purification plant)
- Recirculation operation
- Air filtration

Ventilation

- Fresh air supply
- Extract air removal (air conveyance via the extract air purification plant)
- Recirculation operation
- Air filtration

Ventilation

- Fresh air supply
- Extract air removal

 (air conveyance via the extract air purification plant)
- Recirculation operation
- Air filtration

Heating

With connection to boiler system

Heating

With connection to boiler system

Cooling

■ With connection to water chiller

Energy recovery from process air

PV-10	PVH-10	PVC-10
10000	10000	10000
-	up to 234	up to 256
-	-	up to 118
-	-	-
1657	1699	1754

Aftersales, Service and Spares

Comprehensive support for lasting performance, efficiency and reliability

Hoval service extends far beyond consultation and purchase. We have a team of fully qualified service engineers on hand and offer aftersales care tailored to meet a variety of specific requirements.

Peace of Mind

Our team of service engineers are Gas Safe registered and fully qualified, with knowledge of all the latest products, technical developments and legislative requirements to ensure your equipment retains the highest standard of performance.

Standard and Extended Warranties

All of our products come with warranties as standard. The UltraGas® 2 includes a 10 year heat exchanger warranty.* Extended warranties may be available on request.

Commissioning and Servicing

we have a range of commissioning and servicing packages available to choose from to suit your needs. When you choose Hoval to commission and service your equipment you can rest assured that we will deliver optimum performance from the first day of operation, with prolonged product life and minimum environmental impact.

Service Plans

Hoval offers a range of flexible service plans designed to provide expert maintenance and long-term support for your heating system. Whether you prefer an annual service package, a plan that locks in pricing for multiple years, or one that aligns with an extended warranty, there are options to suit different needs. Each plan includes benefits such as scheduled service visits, discounts on spare parts and breakdown rates, and additional savings on essential service kits—helping to ensure reliable performance and peace of mind.

339

Spares

We maintain comprehensive stocks of commonly used spare parts which are generally available for next day delivery.

Hoval also offers spares kits for our UltraGas® and TopGas® boilers which contain all the necessary spares needed for a standard service. Any items used by a Hoval engineer attending site will be replenished so they are always on hand, just in case.

As the manufacturer, we have fact direct access to spare parts.

Comprehensive Maintenance

Our full service package encompasses the boiler, burner and boiler controls, and delivers benefits including:

- Optimised control setttings
- Reduced energt consumption and carbon emissions
- Early defect detection and timely wear checks

Biomass and CHP

Maintenance of biomass boilers and combined heat and power (CHP) plants requires specialist knowledge, and we have many years' experience in this area, meaning we can provide:

- Precise control to maintain outputs while reducing running costs and emissions
- Harmonised integration between different heat sources

340 307

Hoval quality. You can count on us.

Hoval is one of the leading international companies for heating and indoor climate solutions. Drawing on more than 75 years of experience and benefiting from a close-knit team culture, the Hoval Group delivers exciting solutions and develops technically superior products. This leadership role requires a sense of responsibility for energy and the environment, which is expressed in an intelligent combination of different heating technologies and customised indoor climate solutions.

Hoval also provides personal consultations and comprehensive customer service. With around 2500 employees in 15 companies around the world, Hoval sees itself not as a conglomerate, but as a large family that thinks and acts globally. Hoval heating and indoor climate solutions are currently exported to

Responsibility for energy and environment

more than 50 countries.

Liechtenstein

Hoval Aktiengesellschaft 9490 Vaduz +423 399 24 00 hoval.com

United Kingdom

Hoval Ltd. Newark Notts. NG 24 1JN +44 1636 672 711 hoval.co.uk

Your Hoval partner